
Pattern Hatching

Composite Design Patterns
(They Aren’t What You Think)
John Vlissides
C++ Report, June 1998

 1998 by John Vlissides. All rights reserved.

Dirk Riehle presented an interesting paper titled “Composite Design Patterns” at last October’s OOPSLA
conference in Atlanta.1 The paper wasn’t exactly new to me, as I had reviewed it well before the conference.
(I was on the program committee.) But even before that, Dirk and I had discussed its topic on a couple of
occasions. Anyhow, I am delighted he wrote that paper, because I think it maps out valuable and largely
unexplored territory in the pattern frontier. Dirk has initiated a dialogue, and I can’t resist chiming in.

You’re probably wondering what the topic is, and the paper’s title isn’t helping. No, it’s not about the
COMPOSITE pattern in Design Patterns,2 at least not directly. It has to do with documenting how patterns
work together.

It’s not uncommon to see the same small set of patterns cooperating again and again in different designs. A
Visitor visiting a Composite through an Iterator is one example; a Singleton Mediator is another; a Proto-
type-based Abstract Factory is yet another. When patterns cooperate, the cooperation itself can give rise to
problems, contexts, trade-offs, and consequences. For instance, should a Visitor be a part of an Iterator, or
vice versa? Or is neither the case? (They could well be one and the same class.) It all depends on the trade-
offs you’re willing to make.

Sadly, these issues aren’t discussed much in Design Patterns. Just where should they be discussed? In the
VISITOR pattern, in ITERATOR, or both maybe? What about other VISITOR combinations worth document-
ing—where do they go? Individual patterns are hard-pressed to cover such issues. Indeed, they’re hard-
pressed to cover their own issues. VISITOR is fourteen pages long as it is, and Jim Coplien, for one, thinks
that’s way too long already.

What Dirk has dubbed “composite design patterns” may be of considerable help here. Composite design
patterns (or simply “composite patterns”) are themselves patterns in that they name and document a recur-
ring solution to a common problem. The twist is that composite patterns express themselves in terms of
other patterns, even other composite patterns. The goal here is to capture synergy between patterns and
make it explicit—synergy you’d otherwise have to discern for yourself.

I’ll be offering up several composite patterns over the next few columns. I’ll describe them informally at
first, gradually evolving toward a more structured format, one akin to the pattern template we use in Design
Patterns.

Before diving in, I should point out one other thing composite design patterns aren’t: they aren’t full-blown
pattern languages. It seems the distinction between patterns and pattern languages still confuses people after
all these years, despite (or perhaps because of) all that has been written about them. If you’re okay with the
distinction, feel free to skip the next section.

Patterns versus Pattern Languages
Simply put, a pattern captures a recurring problem-solution pair. It can delve arbitrarily deeply into the
problem, the solution, the forces on that solution, its context and consequences, etc.; but at the end of the
day, a pattern addresses just one problem. What’s more, a pattern cannot be subdivided into finer-grained
patterns—not profitably, anyway. Contrast that with a pattern language, which is a collection of patterns

2 Composite Design Patterns

“Pattern Hatching” C++ Report June 1998

that cooperate to solve a family of problems. “Family” implies close relationship. The solutions to these
related problems recur and can therefore be expressed as patterns within the language.

If you think individual patterns are helpful, the right pattern language can do far more for you, at least in
theory. Unfortunately, many pattern languages have a property that renders them less than helpful. It’s
analogous to the trouble with many frameworks, should that strike a chord. In a word, it’s ambitiousness.

The concept of “family” is as important to frameworks as it is to pattern languages, but in a different sense.
A framework defines an architecture for a family of applications. An accounting framework, for example,
defines a common architecture for general ledger, inventory, and other accounting apps. A compiler
framework defines an architecture for compilers across languages, machines, and optimization techniques.
A graphical editing framework defines an architecture for drawing editors, electronic design aids, project
management systems, and other tools for creating drawings and diagrammatic specifications on-screen. A
framework expresses such architectures in a very concrete way: as interfaces and/or abstract classes in a
programming language, usually with accompanying default implementations.

Why do these or any other applications need an architecture? It’s primarily due to size and its attendant
cost. Large, complex systems must be scoped out and partitioned in advance. They need a design apart from
code, a design within which to understand and reason about the code. A system that’s small and cheap to
create doesn’t justify spending oodles of time architecting it. Any competent programmer can simply hack it
out. An architecture is just an expensive diversion unless the system is big or intricate—and if it’s either, it’s
probably both.

Designing a framework is still more expensive, because a framework isn’t just any architecture; it’s a reus-
able architecture, meaning it has to work across applications. The framework will not succeed unless its
architecture draws on experience with those very applications. As Ralph likes to say, you can’t reuse what
you haven’t used in the first place.

Pattern languages have much the same flavor, and perhaps a stronger one at that. The family of problem-
solution pairs that make up a pattern language collectively solve a grander problem. If it’s not a sufficiently
grand problem, you probably don’t need a pattern language to solve it; it would be like using a sledge-
hammer to kill an ant. But the problem ought to be more than just grand—it must present itself time and
again. It must recur. A pattern language should be flexible enough, therefore, to apply in varied settings (as
is true of a framework), and that’s not bloody likely unless the language draws on real experience. Sheer
ambitiousness has made rare commodities of good pattern languages and frameworks alike.

I’m not saying we should give up on pattern languages or frameworks—far from it. But few will argue that
real pattern languages aren’t a big step up from the patterns in Design Patterns. If most pattern writers
aren’t ready to take a big step, then a baby step should be an attainable and still respectable goal. It would
give us a way out of the single-pattern rut, and we’d be that much further toward useful pattern languages.
Composite design patterns are one such baby step.

TEMPLATE METHOD-FACTORY METHOD

Here’s the simplest composite pattern I know: the combination of TEMPLATE METHOD and FACTORY

METHOD. What are the synergies between these patterns? There should be some; otherwise there isn’t
much point in writing them up in a composite pattern. And there are indeed a few synergies—elementary
ones, to be sure, but synergies nonetheless.

Recall that TEMPLATE METHOD lets you separate variant and invariant parts of an operation. The invariant
parts are confined to the template method. The template method defers the variant parts to so-called “primi-
tive” operations, which are defined in subclasses. FACTORY METHOD is similar in the sense that it too defers
behavior to subclasses. But whereas TEMPLATE METHOD isn’t specific about behavior—it’s only specific
about responsibility for the behavior—FACTORY METHOD is highly specific about it: the behavior must
culminate in the creation of an object. A factory method always abstracts the instantiation process.

Wherever you find a factory method, a template method can’t be far. The reverse is also true. That’s hardly
surprising, given the patterns’ similarities in intent and implementation. Factory methods often serve as

Composite Design Patterns 3

“Pattern Hatching” C++ Report June 1998

primitive operations to template methods. Less frequently, you’ll see a factory method implemented as a
template method.

Notice that both patterns have class as opposed to object scope. That means they’re generally less flexible
than object patterns that do more or less the same thing—like PROTOTYPE in FACTORY METHOD’s case, or
STRATEGY in TEMPLATE METHOD’s. On the other hand, class patterns tend to be simpler and more efficient.
The trade-off often boils down to flexibility versus lighter weight. When flexibility isn’t an issue, a subsidi-
ary trade-off emerges: lighter weight at compile-time versus run-time.

Both template and factory methods incur relatively little overhead at run-time, since they rely on inheritance
rather than delegation for flexibility. The flip side is that you might end up having to subclass solely to
override a factory method or the primitive operations. However, one of the synergies of these two patterns
is that together, they strengthen the case for subclassing. Neither may justify it alone, but as a team they just
might. You might be more willing to abstract the creation process with a factory method when you’re al-
ready overriding primitive operations. You might also be ready to break up an operation into its primitive
constituents when you have to vary what it creates.

Another simple but significant synergy concerns naming. Oddly, Design Patterns suggests prefixing factory
methods and primitive operations alike with “GR�” to identify them as such. When using the patterns to-
gether, you probably want to distinguish the two. If so, consider prefixing the factory methods with
“PDNH�” or “FUHDWH�” instead of “GR�”.

PROTOTYPE-ABSTRACT FACTORY

ABSTRACT FACTORY talks briefly about using PROTOTYPE to create products. PROTOTYPE mentions
ABSTRACT FACTORY, but only as a competitor. There’s a lot more to their confluence than that.

The vanilla implementation of ABSTRACT FACTORY populates the AbstractFactory interface with what
amounts to a bunch of factory methods. As a rule, PROTOTYPE will work wherever FACTORY METHOD will,
and with more flexibility, but also with higher run-time cost. If you’re willing to absorb that cost, you can
use PROTOTYPE to reduce the number of classes that ABSTRACT FACTORY introduces.

Figure 1 shows how PROTOTYPE impacts ABSTRACT FACTORY’s structure. Note that there’s but one Con-
creteFactory class, and there’s no AbstractFactory at all. Before applying PROTOTYPE, we used
AbstractFactory solely to define the “manufacturing interface” for ConcreteFactories, which implemented
that interface. The types of products were parameterized by subclassing AbstractFactory. In PROTOTYPE-
ABSTRACT FACTORY we use prototypes to parameterize the product types. All we need is a single Concre-
teFactory class that we configure with the appropriate prototype objects.

In this case the prototypes are objects of type AbstractProductA and AbstractProductB. These correspond,
presumably, to instances of ProductA1 and ProductB1, or ProductA2 and ProductB2. I say “presumably”
because, unlike a conventional implementation of ABSTRACT FACTORY, the PROTOTYPE-based implementa-
tion allows mixing and matching products from different families—that is, unless deliberate steps are taken
to preclude it.

That raises a slew of interesting questions: Who configures ConcreteFactory, and with what prototypes, and
when? Is configuration carried out when the ConcreteFactory is instantiated? If so, does its constructor al-
low the client to supply prototypes of the client’s choosing? Is there an interface for setting the prototypes
after ConcreteFactory instantiation? If so, does that interface include operations for getting the prototypes?
And are there safeguards against mixing prototypes from different families? How do they work? (Alas,
these questions will have to wait till next time.)

4 Composite Design Patterns

“Pattern Hatching” C++ Report June 1998

ConcreteFactory

createProductA()
createProductB()

ProductA1

copy()

AbstractProductA

copy()

ProductA2

copy()

return
productB.copy()

Client

return
productA.copy()

ProductB1

copy()

AbstractProductB

copy()

ProductB2

copy()

productA

productB

Figure 1:PROTOTYPE-ABSTRACT FACTORY structure

COMPOSITE Composites
The COMPOSITE pattern has a particularly strong affinity for other patterns, and the resulting synergies are
invariably rich. Here are sketches of just a few of them:

• COMPOSITE-DECORATOR: These two patterns complement each other as no others. Why, they even
share the name of their base class participant—“Component.” The same mechanisms for recursive
composition that let Composite work its magic do likewise for Decorator. You’ll often find the two
working together.

As anyone who has used COMPOSITE can testify, the linchpin of its application is the Component
interface. It’s key because it defines what you can treat uniformly, which is the very heart of the
pattern’s intent. The most common quandary in designing the Component interface is whether it
includes child manipulation operations like LQVHUW, UHPRYH, and their associates. Your decision
inevitably rests on a trade-off between uniformity and static type safety. If you opt for uniformity,
then you’ll declare these (and probably all other) operations in the Component class; otherwise you
won’t, and you’ll suffer the resulting downcasts whenever they’re needed.

The COMPOSITE-DECORATOR composition adds weight to the argument for a uniform interface.
DECORATOR works poorly or not at all unless there is a common interface. You can’t decorate a
component transparently unless both component and decorator share an interface. Yes, it’s possi-
ble to have several type-specific ConcreteDecorators that cater to different interfaces. But if the
ConcreteComponents they decorate have a common base class, as DECORATOR prescribes, then
you’ll probably have to downcast before you decorate.

• COMPOSITE-FLYWEIGHT: The COMPOSITE pattern can produce a lot of overhead if you apply it at
too fine a granularity. The Lexi document processor that’s described in Chapter 2 of Design Pat-
terns defines Components at the level of individual characters and graphical primitives such as
lines and polygons. If a page of a typical book contains 5000 characters, then a 200 page book will
allocate one million leaf objects. That doesn’t count the internal nodes of the composite, or graph-
ics, or any other objects in the system. Clearly this is not the most efficient way to go.

Fortunately for us there’s FLYWEIGHT. It’s applicable here because there’s a lot of redundancy in
our document structure. There may be a lot of characters, but there aren’t many different charac-
ters. You might see thousands of lowercase “a’s”, but usually they are exactly the same—same
size, same font, same color. That means they can be shared. And you don’t have to do a heroic

Composite Design Patterns 5

“Pattern Hatching” C++ Report June 1998

amount of sharing to get a big reduction in objects. As FLYWEIGHT points out, sharing basic text
attributes can let you represent a 180,000-character document with just under 500 objects.

But sharing may introduce a big problem. Many applications of COMPOSITE store a parent link in
every component. How do you implement parent links when components may be shared? Typi-
cally, you don’t; you redesign your protocols to avoid upward traversals. This usually requires
rethinking your application of COMPOSITE. It may even lead you away from applying it at so fine a
granularity.

Alternatively, components may keep track of multiple parents. When a client asks a component for
its parent, the client must supply contextual information so that the component can determine the
proper parent for this context. The contextual information can take the form of a location in a vir-
tual tree structure. The component uses this location as a key to look up the corresponding parent.
Regrettably, this is seldom a straightforward computation.

• COMPOSITE-ITERATOR-VISITOR: If there’s one thing you do with composites, it’s traverse them.
ITERATOR lets you traverse these structures without regard for how they are linked together. It also
lets you reuse common traversals. Meanwhile, VISITOR lets you perform (or not perform) type-
specific work at each point in the traversal. The implementation of that work goes into a Concre-
teVisitor class, not the Component classes. The separation of concerns thus established promotes
extensibility and keeps the Component interface sweet and simple.

Still, it’s entirely possible that your application doesn’t need the full generality of separate Iterator
and Visitor classes. Clients don’t normally use visitors on isolated objects; they use them during
traversal, for that’s commonly when the concrete types vary in unpredictable ways. Consequently,
Visitor and Iterator classes are often lumped into one intrepid workhorse.

But even if these classes are separate, they are likely to be closely related. What exactly is their
relationship? Does the Visitor aggregate an iterator, or vice versa? Certain Visitors might expect
certain traversals. In that case, someone must be responsible for coupling visitors with the iterators
they require.

More to Come
This is just the start of a start, as you’ve probably gathered. There are at least as many composite patterns as
there are other kinds of patterns. Here are few more that I’ve noticed and that I’ll be talking about:

• COMPOSITE-STRATEGY-OBSERVER, better known as Model-View-Controller, from the Smalltalk
world. Buschmann & Co. wrote this up as an architectural pattern3, but casting it as a composite
pattern yields a more compact discussion with little or no disadvantage.

• MEDIATOR-OBSERVER, which is already discussed a bit in OBSERVER, but rather superficially—
probably because of that pattern’s already considerable girth.

• COMMAND-MEMENTO, another hand-in-glove combination given short shrift in its constituent pat-
terns.

It bears emphasizing that composite design patterns are first and foremost patterns. As such they should
reflect real usage, not synthetic mind games (although those can be fun, too). As we contemplate these pat-
terns, I’m counting on you to keep me honest. Feel free to send in your known uses of these and any other
combinations you’ve encountered. We’ve got a lot of new country to explore, and Dirk and I can’t do it
alone!

6 Composite Design Patterns

“Pattern Hatching” C++ Report June 1998

References
1 D. Riehle. “Composite Design Patterns.” In OOPSLA ’97 Conference Proceedings, published as ACM
SIGPLAN Notices, 32(10):218–228, October 1997. ACM Press.

2 E. Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA, 1995.

3 F. Buschmann, et al. Pattern-Oriented Software Architecture: A System of Patterns. Wiley, Chichester,
England, 1996.

