
Pattern Hatching

PLUGGABLE FACTORY, Part II
John Vlissides
C++ Report, February 1999

 1999 by John Vlissides. All rights reserved.

In this, the final installment on the PLUGGABLE FACTORY pattern, we pick up where we left off last time1—
at the pattern’s Structure diagram, shown in Figure 1. As you look at the structure, please remember that it’s
merely an example of a typical implementation, not a specification to be beholden to. You’re welcome to
vary your implementation as you see fit. The Consequences and Implementation sections will guide you in
tailoring the pattern to your needs.

ConcreteFactory

createProductA()
createProductB()

ProductA1

copy()

AbstractProductA

copy()

ProductA2

copy()

return
productB.copy()

Client

return
productA.copy()

ProductB1

copy()

AbstractProductB

copy()

ProductB2

copy()

productA

productB

Figure 1: Structure of PLUGGABLE FACTORY

Another thing to keep in mind is PLUGGABLE FACTORY’s intent, which is to specify and change product
types dynamically without replacing the factory instance. The pattern achieves this intent with a structure
similar to ABSTRACT FACTORY’s but with notable differences contributed by the PROTOTYPE pattern.2

The most glaring of these differences is the absence of an AbstractFactory hierarchy. Figure 2 shows the
vanilla ABSTRACT FACTORY structure. Notice that the only way a client can vary the kind of product pro-
duced is to use a different kind of ConcreteFactory object. In contrast, PLUGGABLE FACTORY lets clients
vary product types by keeping the same ConcreteFactory instance and varying the prototypes it copies. The
result is a simpler structure. The run-time relationships between factory and the product classes are a bit
more complex, however, as subsequent sections in the pattern reveal.

2 Pluggable Factory, Part II

“Pattern Hatching” C++ Report February 1999

AbstractFactory

createProductA()
createProductB()

AbstractProductAClient

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

ConcreteFactory1

createProductA()
createProductB()

return
new ProductA1

ConcreteFactory2

createProductA()
createProductB()

return
new ProductA2

return
new ProductB1

return
new ProductB2

Figure 2: Vanilla ABSTRACT FACTORY structure

Participants
ConcreteFactory (WidgetFactory)

• keeps references to prototypical ConcreteProduct instances, each of which conforms to an Ab-
stractProduct interface.

• for each AbstractProduct class, implements an operation that creates a ConcreteProduct object by
copying a corresponding prototype.

• may include get and set operations for each prototype.

AbstractProduct (Button, Scrollbar)

• declares an interface for a type of product object.

ConcreteProduct (MotifButton, MotifScrollbar)

• defines a product object to be created by the concrete factory.

• implements an AbstractProduct interface

Client

• uses only interfaces declared by ConcreteFactory and AbstractProduct classes.

Collaborations
• Normally, a single instance of a ConcreteFactory class is created at run-time. This concrete fac-

tory creates product objects of related concrete types.

• To change one of the types of concrete product that will be created, replace the corresponding
prototype with another type of product. If a client may do the replacement (as opposed to the fac-
tory itself), then the ConcreteFactory class must provide a public operation for setting the
prototype.

• If it’s ever necessary to change all concrete product types at once, it may be easier to replace the
ConcreteFactory instance with an entirely new one containing a different set of prototypes.

Pluggable Factory, Part II 3

“Pattern Hatching” C++ Report February 1999

Consequences
PLUGGABLE FACTORY shares some benefits and liabilities with ABSTRACT FACTORY. Both patterns insulate
clients from concrete classes and their instantiation. Client code needn’t change to create different types of
products, as long as they’re compatible types. And supporting new AbstractProduct types remains difficult.

Beyond these commonalities, however, the consequences of the two patterns diverge.

1. PLUGGABLE FACTORY’s class structure is simpler than ABSTRACT FACTORY’s. In PLUGGABLE Fac-
tory, changing the lone ConcreteFactory’s prototypes changes the kinds of products that get
created. ABSTRACT FACTORY needs a whole hierarchy of abstract and concrete factory classes to
achieve comparable versatility. PLUGGABLE FACTORY gives you the flexibility of ABSTRACT

FACTORY with fewer classes.

2. The factory interface tends to be more complex in PLUGGABLE FACTORY. ConcreteFactory must let
clients specify the prototypes to use. Most simply, it can define constructors that take prototypes as
parameters. If clients may update or replace the prototypes after construction (which is likely given
this pattern’s intent), then ConcreteFactory should also provide getter and setter operations for the
prototypes. AbstractFactory classes are generally less flexible by comparison. They don’t offer pa-
rameterized constructors, getters, or setters; so their interfaces tend to be simpler.

3. Changing individual product types is easy. Getter and setter operations provide access to the fac-
tory’s product prototypes and let clients change them independently. A client can modify the
prototype—to update its internal state, for example—or replace it with another instance of any
compatible product type.

With ABSTRACT FACTORY, changing the product type requires a new and different ConcreteFac-
tory instance. That can be a more disruptive and error-prone operation because of the potential for
dangling references to the old ConcreteFactory instance. And a conventional AbstractFactory inter-
face provides no way to fine-tune product state.

4. Consistency among products is hard to enforce statically. Products are often designed to work as a
family, which is a key assumption of ABSTRACT FACTORY. Buttons conforming to one look-and-
feel standard, for example, shouldn’t be mixed with menus conforming to another. ABSTRACT

FACTORY can offer a compile-time guarantee that applications will use products from only one
family at a time. The pattern keeps clients from creating products from different families by asso-
ciating each family with a concrete class.

PLUGGABLE FACTORY is weaker in its support of the “product family” concept. The pattern doesn’t
group related products under a static type and can therefore make no static guarantees about prod-
uct consistency. Instead, a pluggable factory that detects illegal combinations of products must do
so at run-time, as discussed in the Implementation and Sample Code sections.

5. Exchanging families of product types is more difficult compared to ABSTRACT FACTORY. Both pat-
terns let you change the family of product classes in one fell swoop simply by replacing the factory
instance. However, constructing a pluggable factory is often more involved than a conventional
factory, because you have to supply prototypes to the pluggable factory's constructor. To compen-
sate, you can provide parameterless constructors that configure the pluggable factory with default
prototypes—assuming there are reasonable defaults.

Implementation
Here are three issues to consider when implementing a pluggable factory.

1. Providing default prototypes. Suppose that, by default, the WidgetFactory in the Motivation sec-
tion1 should create widgets comforming to the Windows look and feel standard. Thus if a client
creates a WidgetFactory without prototypes, it will return WindowsButton and WindowsScrollBar
instances. In C++ we can define a single constructor to support these defaults, using default pa-
rameters:

4 Pluggable Factory, Part II

“Pattern Hatching” C++ Report February 1999

WidgetFactory (Button* btnProto = 0, ScrollBar* sbProto = 0) :
 _button(btnProto ? btnProto : new WindowsButton),
 _scrollbar(sbProto ? sbProto : new WindowsScrollBar) { }

Java, lacking default parameters, requires three constructors to achieve the same effect:

WidgetFactory () {
 _button = new WindowsButton();
 _scrollbar = new WindowsScrollBar();
}

WidgetFactory (Button btnProto) {
 _button = btnProto;
 _scrollbar = new WindowsScrollBar();
}

WidgetFactory (Button btnProto, ScrollBar sbProto) {
 _button = btnProto;
 _scrollbar = sbProto;
}

While more verbose, the Java implementation is marginally more efficient because it lacks run-
time tests for null—the appropriate default behavior is determined statically. Of course, a C++ im-
plementation may use overloaded constructors too if run-time overhead is an issue.

2. Checking for illegal product type combinations. The WidgetFactory constructors in the preced-
ing item do nothing to prevent a client from pairing a button from one look and feel with a
scrollbar from another. It can happen easily enough—by supplying a MotifButton prototype as the
sole parameter, for example. We can reduce this particular risk by forcing clients to supply either
two parameters or none. But mixing look and feels remains a distinct possibility.

PLUGGABLE FACTORY makes it all but impossible to prevent this problem statically. If mixing is a
concern, the factory should implement run-time tests that throw exceptions when mixing occurs.
Such tests require a way to identify the look-and-feel family to which a widget belongs. The Sam-
ple Code section shows a couple approaches to implementing these tests.

The factory should also force a client to specify a full set of prototypes, even if it only cares to
specify one prototype. But that may be awkward if there are many kinds of products. For example,
say WidgetFactory produces only two kinds of widgets, buttons and scrollbars. Then it should de-
fine two constructors: a parameterless one that creates default prototypes, and a two-parameter one
that takes a button and a scrollbar and checks their compatibility:

WidgetFactory();
WidgetFactory(Button* btnProto, ScrollBar* sbProto);

If clients are allowed to change the prototypes, then there should also be a single, two-parameter
setter operation:

void setPrototypes(Button* btnProto, ScrollBar* sbProto);

Supplying the prototypes in pairs lets the constructor and setter operations check the prototypes for
consistency. Specifying the prototypes individually is unsatisfactory because it could leave the
factory in an inconsistent state, however briefly.

To see why, suppose WidgetFactory offered individual setter operations for the button and
scrollbar prototypes. Both operations check to make sure the prototypes in the factory are from the
same look-and-feel standard. Now suppose a client wants to use these operations to switch from
the default Windows look and feel to Motif:

WidgetFactory factory;
// ...

Pluggable Factory, Part II 5

“Pattern Hatching” C++ Report February 1999

factory.setButtonPrototype(new MotifButton); // inconsistent with
 // current
 // WindowsScrollBar;
 // throws exception

factory.setScrollBar(new MotifButton); // consistency would have been
 // restored here

A combined setPrototypes operation can avoid this problem. However, that’s a viable option
only when there aren’t a lot of prototypes to set—and that’s probably not the case for WidgetFac-
tory. In reality it would also offer pull-down and pop-up menus, text fields, and a host of other
common widgets. It would be clumsy and inconvenient to specify prototypes for all widgets in
setPrototypes.

The bottom line: If your ConcreteFactory produces many kinds of products, and you are concerned
about mixing products from different families, then choose ABSTRACT FACTORY over PLUGGABLE

FACTORY.

3. Class names or objects as alternatives to prototypes. Instead of specifying the types to instantiate
with prototypes, Smalltalk and Java implementations can use class objects or strings identifying
class names, as suggested in item 2 of ABSTRACT FACTORY’s Implementation section.2 Strings and
class names are good alternatives when you’re coding in these languages and either of the follow-
ing are true:

• Products do not maintain internal state that can vary across initializations (for example, the
font of a widget changing after docking a notebook computer, as described in the Motivation
section1).

• The prototypes are too large to keep instantiated continuously, or copying them is unaccepta-
bly expensive compared to conventional instantiation.

Sample Code
The simplest implementation of the WidgetFactory example1 looks like this in C++:

class WidgetFactory {
public:
 WidgetFactory(Button* btnProto, ScrollBar* sbProto);

 Button* createButton () { return _button->copy(); }
 ScrollBar* createScrollBar () { return _scrollbar->copy(); }

private:
 Button* _button;
 ScrollBar* _scrollbar;

};

where the constructor is implemented as shown in Implementation item 1. The Button and ScrollBar classes
implement copy according to the PROTOTYPE pattern, normally as a deep copy. If clients are allowed to
change the prototypes after the widget factory’s construction, then you’ll need to provide getter and setter
operations. Here’s a getter/setter pair for the button prototype:

Button* WidgetFactory::getButtonPrototype () { return _button; }

void WidgetFactory::setButtonPrototype (Button* newProto) {
 if (newProto != _button) delete _button;
 _button = newProto;
}

Note the delete operation in setButtonPrototype. We’re assuming that the factory owns its proto-
types, as the aggregation diamonds in the Structure diagram suggest (Figure 1). Therefore the setter
operation is responsible for deleting the old prototype before adopting the new one—assuming they’re not

6 Pluggable Factory, Part II

“Pattern Hatching” C++ Report February 1999

one and the same object. You can ignore this issue in Java, which will reclaim the old prototype automati-
cally.

If you want to avoid mixing prototypes from different product families, then define a single setter operation
that checks for type consistency at run-time (it’s still okay to provide a getter operation for every product
type):

void WidgetFactory::setPrototypes (Button* btnProto, ScrollBar* sbProto) {
 if (incompatible(btnProto, sbProto)) {
 throw IncompatiblePrototypes(this, btnProto, sbProto);
 }

 if (btnProto != _button) delete _button;
 if (sbProto != _scrollbar) delete _scrollbar;

 _button = btnProto;
 _scrollbar = sbProto;
}

incompatible is a boolean-returning operation that abstracts the process of checking for compatibility
among the prototypes. Before we look at implementations of this operation, consider a couple of other
things about setPrototype’s implementation. First, it throws an exception when incompatible detects
an incompatibility. The type of exception is entirely up to you; here it is a simple class that bundles the fac-
tory with the prototypes deemed incompatible:

class IncompatiblePrototypes {
public:
 IncompatiblePrototypes (
 WidgetFactory* factory, Button* button, ScrollBar* sb
);

 WidgetFactory* getFactory () { return _factory; }
 Button* getButton () { return _button; }
 ScrollBar* getScrollBar () { return _scrollbar; }

private:
 WidgetFactory* _factory;
 Button* _button;
 ScrollBar* _scrollbar;
};

Clients that catch the exception may access the prototypes, fix the incompatibility, and retry the setProto-
types operation on the factory.

The second thing to note about setPrototypes is that it also deletes old prototypes, still under the as-
sumption that the factory owns them. The checks for identity are crucial, because there will be times when a
client wants to change just one of the prototypes. The current interface forces the client to supply a proto-
type even if the client doesn’t want it changed. If the client specifies an existing prototype, the identity
check will avert a misguided deletion.

If it’s common for clients to change just one prototype at a time, then supplying the unchanged prototypes
will be inconvenient. You can make things easier by letting a null value signify no change:

void WidgetFactory::setPrototypes (Button* btnProto, ScrollBar* sbProto) {
 btnProto = btnProto ? btnProto : _button;
 sbProto = sbProto ? sbProto : _scrollbar;

 // remaining implementation as before
}

Now let’s look at how we might implement incompatible. The main challenge lies in determining which
widget classes belong to which look-and-feel family. It’s challenging because the mapping of classes to
look-and-feel isn’t explicit in the code. ABSTRACT FACTORY defines such a mapping explicitly in the form

Pluggable Factory, Part II 7

“Pattern Hatching” C++ Report February 1999

of a ConcreteFactory subclass for each family. PLUGGABLE FACTORY defines just one ConcreteFactory,
leaving no other place to define the mapping.

How do you define the mapping? One way is with a map of class names to look-and-feels:

class WidgetFactory {
public:
 // ...

 static void mapping(const string& className, const string& lookAndFeel);
 static void unmap(const string& className);

 static const string& getLookAndFeel(const string& className);

private:
 map<string, string> _mapping;
};

mapping puts the given (className, lookAndFeel) pair into the map, and unmap erases the mapping for
the given class name. getLookAndFeel returns the look and feel mapped to the given class name, if it has
been mapped; otherwise it returns an empty string.

incompatible uses the typeid operator to get the class name of each prototype. Then it compares the
look and feels mapped to these names:

bool WidgetFactory::incompatible (Button* button, Scrollbar* scrollbar) {
 string btnName = typeid(button).name();
 string sbName = typeid(scrollbar).name();

 return getLookAndFeel(btnName) != getLookAndFeel(sbName);
}

getLookAndFeel simply looks the class name up in the map:

const string& WidgetFactory::getLookAndFeel (const String& className) {
 map<string, string>::const_iterator i = _mapping.find(className);

 return (i == _mapping.end()) ? "" : *i;
}

Of course, this assumes someone has mapped widget class names to their appropriate look and feels. In
other words, someone, somewhere must have said:

WidgetFactory::mapping("MotifButton", "Motif");
WidgetFactory::mapping("MotifScrollBar", "Motif");
WidgetFactory::mapping("PMButton", "PM");
WidgetFactory::mapping("PMScrollBar", "PM");
WidgetFactory::mapping("WindowsButton", "Windows");
WidgetFactory::mapping("WindowsScrollBar", "Windows");
// etc.

That begs the question of where this code gets implemented. There are at least three choices:

1. In the WidgetFactory, perhaps in its constructor. However, you’ll have to change that constructor
if and when new widget types get defined, or when you target a new look and feel.

2. In a client of WidgetFactory, say, in a global initialization routine. That may be more extensible
than putting the code in WidgetFactory, but it’s still less automatic than we might like.

3. In the widgets themselves. Widgets can do the registration in their constructor. The trick is doing it
just once; repeated registration of the same mapping is unnecessary and promotes inefficiency. A
simple approach to one-time registration tests a static variable:

MotifButton::MotifButton () {
 static bool unmapped = true;

8 Pluggable Factory, Part II

“Pattern Hatching” C++ Report February 1999

 if (unmapped) {
 WidgetFactory::mapping("MotifButton", "Motif");
 unmapped = false;
 }

 // ...
}

There is an entirely different approach to mapping widget types to look-and-feel standards that doesn’t re-
quire explicit mapping code. It relies on a simple widget naming convention wherein a widget’s class name
concatenates the look-and-feel’s name with the generic name for the widget. For example, if we use “Win-
dows” to denote the Windows look and feel, then the conventional name for the Windows button class is
“WindowsButton.”

This naming convention lets us eschew explicit mapping code by implementing incompatible like this:

bool WidgetFactory::incompatible (Button* button, Scrollbar* scrollbar) {
 string btnName = typeid(button).name();
 string sbName = typeid(scrollbar).name();

 string btnLookAndFeel = btnName.substr(0, btnName.find("Button")-1);
 string sbLookAndFeel = sbName.substr(0, sbName.find("ScrollBar")-1);
 // strip off generic widget name to obtain look-and-feel name

 return btnLookAndFeel != sbLookAndFeel;
}

Notice there’s no longer a need for a getLookAndFeel operation.

Here’s the same approach implemented in its entirety in Java:

class WidgetFactory {
 public WidgetFactory (Button btnProto, ScrollBar sbProto) {
 _button = btnProto;
 _scrollbar = sbProto;
 }

 public Button createButton () { return _button.copy(); }
 public ScrollBar createScrollBar () { return _scrollbar.copy(); }

 public Button getButtonPrototype () { return _button; }
 public ScrollBar getScrollBarPrototype () { return _scrollbar; }

 public void setPrototypes (Button btnProto, ScrollBar sbProto) {
 if (incompatible(btnProto, sbProto)) {
 throw new IncompatiblePrototypes(this, btnProto, sbProto);
 }

 _button = btnProto;
 _scrollbar = sbProto;
 }

 protected boolean incompatible (Button button, Scrollbar scrollbar) {
 String btnName = button.getClass().getName();
 String sbName = scrollbar.getClass().getName();

 String btnLookAndFeel =
 btnName.substr(0, btnName.indexOf("Button")-1);
 String sbLookAndFeel =
 sbName.substr(0, sbName.indexOf("ScrollBar")-1);

 return btnLookAndFeel.compareTo(sbLookAndFeel);
 }

Pluggable Factory, Part II 9

“Pattern Hatching” C++ Report February 1999

 private Button _button;
 private ScrollBar _scrollbar;
}

Known Uses
I have good news and bad news about this section. First the good news: Lacking citable examples of
PLUGGABLE FACTORY, I posted a request for some to the Gang of Four mailing list* and received many re-
sponses. Here are two representative examples, both refreshingly non-GUI-oriented. The first is from
Anthony Lauder:3

I used a prototype-based abstract factory extensively. It was a central
component in a large securities clearance system developed for an in-
ternational bank in Luxembourg. The basic idea was that new classes
were loaded at run-time via a dynamic linker and registered a proto-
type of themselves along with a symbolic name to a common abstract
factory. New classes could then be developed without modifying the
common framework. Applications would read in from a configuration
file the symbolic name of classes they should be using and pass the
symbolic names of classes to the abstract factory when object were to
be created. If a named class was not known to the abstract factory, it
would use the dynamic linker to look it up, link it in, and generate a
prototype, which was then stored against the symbolic name for subse-
quent cloning.

Peter Shillan’s examples were on a more systems-y (not to say “lower”) level:4

As for [PLUGGABLE FACTORY], I’m using it now in a Client/Server Sys-
tem to provide plug-in components.

One use I make is a network system. The abstraction of an EndPoint is
chosen and various kinds of EndPoint (client, server, serverclient) can
be used. The actual network mechanism (UDP, TCP/IP, MSMQ) is
hidden in the lower levels. A Comms “service” gives the user the cor-
rect type of EndPoint.

I have found this useful in other areas too, such as implementing appli-
cation services on a server differently depending on the underlying OS.

These and other examples I received left no doubt in my mind that PLUGGABLE FACTORY is indeed a real
pattern, not something synthetic. That’s the good news. The bad news is that even though I specifically
asked for citable examples, not one of those I received is published in archival form. And yet, I can hardly
point the finger here—my own examples have the very same problem.

Why is this? Is it because PLUGGABLE FACTORY is too new, too specialized, or too … too … embarrassing
to write up? Surely not. People arrived at it independently, didn’t they? It has proved useful time and again,
hasn’t it? Maybe I haven’t been looking hard enough.

Or maybe people just haven’t been good about writing up their experiences. If so, let me encourage you to
amend your New Year’s resolutions with a promise to disclose one use of PLUGGABLE FACTORY—or any
other combination of existing patterns—by year’s end. I bet someone ends up thanking you for it. In the
meantime, if you have a published known use of PLUGGABLE FACTORY, I’d love to hear about it. I’ll even
throw in a little gift (very little—don’t get excited).

* To subscribe, send a note to gang-of-4-patterns-request@cs.uiuc.edu with the subject “subscribe”.

10 Pluggable Factory, Part II

“Pattern Hatching” C++ Report February 1999

Related Patterns
Dirks Bäumer and Riehle have written extensively on creational patterns that discriminate product types
using abstract specifications—prototypes being the simplest example. In particular, their PRODUCT TRADER

pattern5 offers several variants of and alternatives to PLUGGABLE FACTORY.

Acknowledgments
Erich Gamma, Richard Helm, and Dirk Riehle gave me lots of good feedback.

References
1 Vlissides, J. Pluggable factory, part I. C++ Report, November/December 1998, pp. 52–56, 68.
2 Gamma, E., et al. Design Patterns, Addison–Wesley, Reading, MA, 1995.
3 Lauder, A. E-mail communication, Nov. 2, 1998.
4 Shillan, P. E-mail communication, Nov. 2, 1998.
5 Bäumer, D. and D. Riehle. Product Trader, in Pattern Languages of Program Design 3, Addison–Wesley,
Reading, MA, 1998.

