
Working Draft

© Martin Fowler 20 Jul 1997 1

Dealing with
Roles

Martin Fowler
fowler@acm.org

Anyone who runs a company deals with other companies. Such companies may act as suppliers
of goods or services, they may be customers of your products, they may act as agents for selling
goods to your customers, they may be regulatory agencies who you have to deal with to stay on
the right side of the law.

People may do many things within a company. You have engineers, salesmen, directors, accoun-
tants, any of which may need different features in the computer systems within your organiza-
tion.

Dealing with these situations is one of the most common situations in modeling. You have a
group of objects which exhibit bunches of common behavior. They don’t all have the same be-
havior, but they may have some common behavior. At first glance it sounds like a classic case
for inheritance, but there are complications. An object might exhibit more than one bunch of be-
haviors, or may take on new bunches during its lifetime. You may have an agent who is also a
customer, you have an accountant who becomes an engineer.

This paper is an analysis patterns paper, hence I’m looking at the alternatives from a conceptual
point of view, rather than an implementation point of view. I’m asking how we represent our
view of the world in our software, and I’m not looking at important implemenation issues such
as performance, distribution, concurrency etc. I’ve provided some code samples, but they are
there to illustrate the conceptual ideas rather than as statements of what the implementation
should look like. The biggest consequence to this is that I’m concentrating much more on inter-
face than on implementation. You will notice that in particular when you compare the use of
State Object and Role Object. The implementation is essentially the same, the difference is all
about interface.

I’ve divided up how to deal with roles into five broad categories. If most of the objects have the
same behavior with few variations, then you can use just one type to handle all of them (Single
Role Type).Conversely if they are very different and have no common behavior then just treat
them all as seperate types (Separate Role Type). These are the simple cases, and often they are
the right decision.

The complication comes when there is some similar and some different behavior. Often the most
obvious way of doing this is to use subtyping to show the different behaviors (Role Subtype).
This does not mean that you necessarily use subclassing and inheritance to implement it. These
are analysis patterns and thus more concerned with concepts and interfaces than with impleme-
natations. The key behind this pattern is that clients think they are dealing with a single object
that has multiple changable types. Internal Flag, Hidden Delegate, and State Object are three
patterns that can help you maintain this illusion. Providing the illusion makes the client’s life
simpler, it can be well worth the effort.

Working Draft

2 Dealing with Roles

The illusion is often not worth the effort. In this case it is worth having a seperate object for each
of the roles, linked to a base object that ties things together (Role Object). In some cases it is
better to think of the role as a relationship between two objects (Role Relationship).

In discussing these patterns I’ve also mentioned a couple of others in passing. With OO pro-
grams you try to avoid asking an object whether it is an instance of a type. But sometimes that
is legitamate information for a client to use, perhaps for a GUI display. Remember that asking
an object if it is an instance of a type is something different than asking it if it is an instance of
a class, since the types (interfaces) and the classes (implementations) can be different. Explicit
Type Method and Parameterized Type Method are two ways of getting this information.

So this subject of roles brings with it several techniques. Like most issues in modeling there is
no right way that works in all situations. This paper helps point out the options and the trade-
offs involved.

Problem Solution Pattern p

How do you represent the many
roles of an object?

Combine all the fea-
tures of the roles into a
single type

Single Role Type 4

Treat each role as a
separate type

Separate Role Type 4

Make a subtype for
each role. Put com-
mon behavior in the
supertype

Role Subtype 5

Put common features
on a host object with a
separate object for
each role. Clients ask
the host object for the
appropriate role to use
a role’s features.

Role Object 14

Make each role a rela-
tionship with an appro-
priate object

Role Relationship 17

Table 1: Table of Patterns

Working Draft

Dealing with Roles 3

How do you implement general-
ization?

Use an internal flag. Do
method selection inside
the class

Internal Flag 8

Put the varying fea-
tures inside a separate,
private class. Delegate
messages to this object
when needed.

Hidden Delegate 10

Create a hidden dele-
gate for each subtype.
Give them a common
supertype with default
behavior. The public
class has a non-null
link to the supertype.
see [Gang of Four].

State Object 13

How do refer to the dynamic
type of an object?

Use methods named
isTypename and
beTypename

Explicit Type Method 8

Use methods of the
form hasType(type-
name) and
beType(typename)

Parameterized Type Method 14

Problem Solution Pattern p

Table 1: Table of Patterns

Separate
Role Type

Role Subtype Role Object Role Rela-
tionship

Single Role
Type

representing roles

Hidden Dele-
gate

State Object

Internal Flag

implement with

Parameterized
Type MethodExplicit

Type Method

need type information

The Simple Options Working Draft

4 Dealing with Roles

The Simple Options
So you have engineers, salesmen, managers and accountants in your organization. Do you really
need to differentiate between them? You need their job description, or some similar indicator.
So, use a Single Role Type with an attribute either of string or of some simple job description
type. If they don’t have any significantly different features to them, then don’t worry about try-
ing to discriminate between them with any of the other patterns in this article.

This pattern is here because I’ve seen people do all sorts of things that are just not necessary. Its
really a blank ‘do nothing’ case, but it deserves a mention because you should always ask ‘is
this sufficient?’. Perhaps for the moment you don’t need any other pattern, but you are worried
that version x of the system will need to do something at some point in the future. Well don’t
worry, leave it until then. The one really tangible benefit of object-oriented programming is that
it allows you to change things easily, so do it then. Maybe you won’t need to do it. Even if you
do you may find the world looks rather different then, and the decisions you make now will not
be valid. And this pattern is easy to migrate to the other patterns.

On the other hand consider a situation where you have engineers, salesmen, managers and ac-
countants. They each have many different features. Since they are different you can make them
different types: each role is a Separate Role Type. This is what countless developers have done
before you, and it carries the advantage that it separates these different types, removes any cou-
pling between them and allows people to work on them without getting tangled up with worry-
ing about the relationships between them.

But there are two big problems with Separate Role Type: duplicated features and loss of integ-
rity. Engineers, salesmen, managers and accountants are all kinds of person, and as such they
carry a lot of similar things around with them. Names, addresses, personnel information: any-
thing that is general to people. All of these features will have to copied if you have Separate
Role Type, so if there are any changes that affect these common features you have to track down
all these copies and fix them all in the same way. This tedious task is what inheritance is sup-
posed to fix.

The loss of integrity comes when our engineer John Smith adds some managerial responsibili-
ties. If he is both an engineer and a manager we have to create separate objects for each role,
and we cannot tell that they refer to the same person Such loss of information is important if
there might be interactions between being an engineer and being a manager. This lack of integ-
rity is a surprisingly common problem in business systems which often do this with customers
and suppliers. Tying everything back together again can be quite complicated.

Single Role Type

How do you represent the many roles of an object?

Combine all the features of the roles into a single type

✓ Simple

✗ Leads to a single complex type

Separate Role Type

How do you represent the many roles of an object?

Treat each role as a separate type

✓ Simple

✗ Any shared behavior must be duplicated

✗ Difficult to deal with single object playing many roles

Working Draft Using Subtyping

Dealing with Roles 5

On the whole I don’t like this pattern, because of these two problems. But you should look to
see if the problems are really there. Maybe there is no common behavior, maybe you never have
engineers that are managers (or it is so rare that you just don’t care). If that is really the case then
this pattern is fine. I would be surprised if this were the case, however, in any but a small system.

What if you are looking at a legacy system where they did this, and you need to change it to
provide integrity? In these situations the patterns Object Merge1 and Object Equivalence2 from
[Fowler] may help you out.

Using Subtyping
If your engineers, salesmen, managers and accountants have some similarities and some differ-
ences then an obvious route is that of subtyping as in Figure 1. Put the common features of each
type into the person supertype, and put each additional feature of the subtypes into the appro-
priate Role Subtype. This pattern fits well our usual conception of subtyping. Engineers are spe-
cial kinds of person, each instance of engineer is an instance of person, engineers inherit all the
features of person but may add some features. An application can treat a collection of people at
the supertype level if it doesn’t care about the specialized features. If a person is both an engi-
neer and a manager then it is of both the subtypes. If the party later becomes a retiree we add a
retiree Role Subtype to the party.

Oh dear, I hear the sad sounds of object-oriented programmers screaming. What have I done?
Well its that last couple of sentences that’s caused the problem. The major OO languages have
single, static classification; while those offending sentences require multiple, dynamic classifi-
cation. Single classification says that an object may be of only one type and inherit behavior
from other types. Thus John Smith may be an engineer and thus inherit the features of person.
To be a manager as well we need to create a combination engineer/manager type that multiply
inherits from both engineer and manager. If we have many subtypes we will have combinatorial
explosion of these combination subtypes — which is going to be a pain to manage. Multiple
classification means that we can just give John Smith the engineer and manager types without
having any relationship between the types. Static classification means that once an object is giv-
en a type it cannot change type, dynamic classification would allow an accountant to change to
become a engineer.

So since OO programming languages have single, static classification most developers do not
consider this pattern to be an option. In fact it is not as cut and dried as that. When doing analysis

1.Two objects are in fact the same therefore either: copy all the attributes of one over to the
other and switch references, mark one as superseded, or link the two objects with an es-
sence.
2.Some people think that two objects are the same therefore create an equivalence object
between them.

Role Subtype

How do you represent the many roles of an object?

Make a subtype for each role. Put common behavior in the supertype

✓ Conceptually simple

✓ Interface is simple

✗ Cannot directly implement if there are multiple or changing roles

✗ Each new role causes the interface of the supertype to change

Using Subtyping Working Draft

6 Dealing with Roles

we are looking at capturing the domain experts view of the world. We then match this view of
the world to the interface of our software components. Since we are looking at interface then
this approach is possible.

Lets begin by looking at what our interfaces should be. Take the model of Figure 1. This figure
implies the code in Listing 1. Everything defined in Listing 1 is an interface. This is what we
need to manipulate the objects from the outside.

So that’s all very nice, but how do we implement it? There are several answers to how we im-
plement subtyping (see [Fowler]) but here I will show three approaches: Internal Flag, Hidden
Delegate, and State Object.

Figure 1. Using subtypes for the roles.(Notation is that of the UML [Fowler UML])

interface Person {
public String name();
public void name(String newName);
public Money salary ();
public void salary (Money newSalary);
public Money payAmount ();
public void makeManager ();

}
interface Engineer extends Person{

public void numberOfPatents (int value);
public int numberOfPatents ();

}
interface Salesman extends Person{

public void numberOfSales (int numberOfSales);
public int numberOfSales ();

}
interface Manager extends Person{

public void budget (Money value);
public Money budget ();

}

Listing 1. Java interfaces developed from Figure 1

Working Draft Using Subtyping

Dealing with Roles 7

First I’ll show how to do it with an Internal Flag. In this case we have a single person class that
implements all four interfaces. For each partition of subtypes we need to indicate which subtype
is appropriate in this case. The methods newSalesman, makeSalesman, and isSalesman
(in Listing 2) show how we can do this. (For these examples I’ve named the type manipulation
methods using Explicit Type Method). These methods can be added to the interface of person.
When it comes to the operations defined on person we need to guard them to ensure they are

public class PersonImpFlag implements Person, Salesman, Engineer,
Manager{

// Implementing Salesman

public static Salesman newSalesman (String name){
PersonImpFlag result;
result = new PersonImpFlag (name);
result.makeSalesman();
return result;

};

public void makeSalesman () {
_jobTitle = 1;

};

public boolean isSalesman () {
return _jobTitle == 1;

};

public void numberOfSales (int value){
 requireIsSalesman () ;
 _numberOfSales = value;
 };

 public int numberOfSales () {
 requireIsSalesman ();
 return _numberOfSales;
 };

private void requireIsSalesman () {
if (! isSalesman()) throw new PreconditionViolation ("Not

a Salesman") ;
};

private int _numberOfSales;
private int _jobTitle;

}

Listing 2. Implementing the salesman type with flags

Using Subtyping Working Draft

8 Dealing with Roles

only invoked on a salesman, Listing 2 does this with the private method requireIsSalesman.
Any use of the salesman operations on a non-salesman results in a run-time error.

The payAmount operation is a polymorphic operation, defined on person but implemented dif-
ferently by the subtypes. We can implement this by defining a public operation that is essentially
a case statement based on the type indicator. This kind of type based case statement is generally
a bad idea in object-oriented software, but here it is fine because it is hidden within the person
class. Since we cannot use polymorphic methods we use the internal case statement to imitate
them

The Internal Flag provides a reasonable implementation of this kind of more complex classifi-
cation. It does, however, result in a complex person class which has to take on all the data and
behavior of the subtypes, as well as provide the method selection capabilities. As these respon-
sibilities grow they all get lumped into single class: which can become the kind of beast that will
stalk your nightmares.

Another implementation is to use a Hidden Delegate. In this case the additional data and behav-
ior required by the subtype is implemented in a separate class. This class is hidden because any
client class does not see it. The client software still invokes methods on the person, the person

Explicit Type Method

How do refer to the dynamic type of an object?

Use methods named isTypename and beTypename

✓ Explicit interface

✗ If a new type is added the superclass’s interface must change

public Money payAmount (){
if (isSalesman()) return payAmountSalesman();
if (isEngineer()) return payAmountEngineer();
throw new PreconditionViolation ("Invalid Person");

};

private Money payAmountSalesman () {
return _salary.add (Money.dollars(5).multiply

(_numberOfSales));
};
private Money payAmountEngineer () {

return _salary.add (Money.dollars(2).multiply
(_numberOfPatents));

};

Listing 3. The flags implementation of the polymorphic payAmount method.

Internal Flag

How do you implement generalization?

Use an internal flag. Do method selection inside the class

✓ Supports multiple, dynamic classification

✗ The implementing class has the features of all the types it implements.

Working Draft Using Subtyping

Dealing with Roles 9

class then hands off the methods to the delegate when required. Listing 4 shows how this is done
for the manager type. All the public methods declared in the manager interface have to be de-
clared and implemented in person. The implementation in person checks that the receiving ob-
ject is a manager, and if so delegates the request to the hidden manager object.

When using the hidden delegate in this way we move the manager specific behavior and data to
the manager object. This reduces the complexity of the person class. It is a significant difference
if the Role Subtype contains a lot of additional behavior and features. The bad news is that per-

public class PersonImpHD implements Person, Salesman, Engineer,
Manager{
 // implement manager
 public void makeManager () {
 _manager = new ManagerImpHD();
 };

 public boolean isManager (){
 return (_manager != null);
 };

 private void requireIsManager () {

if (! isManager()) throw new PreconditionViolation ("Not a
Manager") ;

};

 public void budget (Money value) {
 requireIsManager();
 _manager.budget(value);
 };

 public Money budget () {
 requireIsManager ();
 return _manager.budget();
 };

private ManagerImpHD _manager;
}
class ManagerImpHD {

public ManagerImpHD () {
};

public void budget (Money value){
_budget = value;

};

public Money budget (){
return _budget;

};

private Money _budget;

}

Listing 4. Implementing manger using a hidden delegate

Using Subtyping Working Draft

10 Dealing with Roles

son class still has all the interface of the Role Subtype and also has to do the method selection:
the decision of whether to pass the message to the Hidden Delegate.

We can deal with the method selection aspect of the problem by using the State Object of [Gang
of Four]. This works very well when we have some mutually exclusive subtypes, such as sales-
man and engineer. The subtypes are each implemented with hidden objects. The hidden classes
are given a superclass. The person class contains a reference to the superclass object. This hid-
den hierarchy now has the responsibility for determining method selection and type testing, and
it can use inheritance and polymorphism to do this.

Listing 5 and Listing 6 show how we can use State Object for salesman. The data and behaviors
are defined on the salesman hidden object. The superclass hidden object (JobHD) provides a
default behavior, which is to indicate an error. The person provides the overall public interface
and delegates the method in its entirety to the hidden delegate. See the contrast between this and
the manager in Listing 4, in this case the person does nothing other than delegate.

The technique works particularly well for payAmount, as shown in Listing 7. In this case the
state object requires some information from person. This is done by Self Delegation [Beck]:
passing the person as an argument when the delegation is done.

Hidden Delegate

How do you implement generalization?

Put the varying features inside a separate, private class. Delegate messages to this object
when needed.

✓ Supports multiple, dynamic classification

✓ Varying behavior is separated into the delegate

✗ Method selection is done by the public class.

Working Draft Using Subtyping

Dealing with Roles 11

public class PersonImpHD implements Person, Salesman, Engineer,
Manager{

public static Salesman newSalesman (String name){
PersonImpHD result;
result = new PersonImpHD (name);
result.makeSalesman();
return result;

};

public void makeSalesman () {
_job = new SalesmanJobHD();

};

public boolean isSalesman () {
return _job.isSalesman();

};

public void numberOfSales (int value){
 _job.numberOfSales(value);
 };

 public int numberOfSales () {
 return _job.numberOfSales();
 };

private JobHD _job;

Listing 5. The PersonImpHD class using a state object to implement the salesman interface.

Using Subtyping Working Draft

12 Dealing with Roles

abstract public class JobHD {

private void incorrectTypeError() {
throw new PreconditionViolation("Incorrect Job Type");

};

public boolean isSalesman () {
return false;

};

public void numberOfSales (int value) {
incorrectTypeError();

};

 public int numberOfSales (){
incorrectTypeError();
return 0;//value not returned since exception is thrown,

compiler needs return
};

}
public class SalesmanJobHD extends JobHD{

public boolean isSalesman () {
return true;

};

public void numberOfSales (int value){
 _numberOfSales = value;
 };

 public int numberOfSales () {
 return _numberOfSales;
 };

private int _numberOfSales = 0;
}

Listing 6. JobHD and its subtype for salesman

Working Draft Turning the roles into separate objects

Dealing with Roles 13

If you want to use this with an incomplete partition, i.e. if a person might be neither a salesman
or an engineer but a vanilla person, then you can either make JobHD a concrete class, or create
a nullJobHd class for that case.

I must stress the common theme behind all these alternatives: each implementation lies behind
the same set of interfaces declared in Listing 1. We can switch any of these implementations
without affecting any of the users of these interfaces.

I tend to use Internal Flag if there are not many features involved, and Hidden Delegate or State
Object if things are more complex. Since they all the same interface you can safely work with
the simplest approach to begin with and change it later when it begins to get awkward.

Turning the roles into separate objects
An alternative to Role Subtype is to use Role Object. In this case we consider engineer, sales-
man, accountant, manager, and retiree to all be roles that the employee may play. Person has an
multi-valued association with person role where person role is the supertype of engineer, sales-
man, accountant, manager, and retiree. This, referred to by [Coad] as the actor-participant pat-
tern, is a common technique for these circumstances.

The implementation looks very similar to using the State Object pattern, the difference lies in
the interface. When using Role Subtype with State Object, the state objects are entirely hidden
from the user of the class. To find a manager’s budget a user asks the person object, which then
makes the appropriate delegation. When using Role Object, however, the user asks the person

public class PersonImpHD implements Person, Salesman, Engineer,
Manager{

public Money payAmount (){
return _job.payAmount(this).add(managerBonus());

};
…
abstract public class JobHD {

abstract public Money payAmount (Person thePerson);
…
public class SalesmanJobHD extends JobHD{

public Money payAmount (Person thePerson) {
return thePerson.salary().add (Money.dollars(5).multiply

(_numberOfSales));
};

Listing 7. Implementing payAmount using a state object

State Object

How do you implement generalization?

Create a hidden delegate for each subtype. Give them a common supertype with default
behavior. The public class has a non-null link to the supertype. see [Gang of Four].

✓ Supports multiple, dynamic classification

✓ Varying behavior is separated into the delegate

✓ Method selection is done by inheritance and polymorphism.

✗ An effort to set up

Turning the roles into separate objects Working Draft

14 Dealing with Roles

object for its manager role, and then asks that role for the budget. In other words the roles are
public knowledge.

Roles are most often used in the style of Figure 2, where each person has a set of role objects
for its various roles. Listing 8 shows how person adds and accesses these roles. We begin with
the person, as before, but changing the amount of sales for a salesman now requires two steps:
first we find the salesman role for the person, then we change the value.

In this case I have used a different approach for the type information. In Listing 6 I used a meth-
od isSalesman which defined in the superclass to be false and overridden in the subclass. I could
use the same approach in this case. However, for variety’s sake, I’ve shown a different approach
which uses a parameterized hasType(String) method. The hasType approach has the advan-
tage that we don’t need to change the interface of person role or person when we add a new role.
Its disadvantages are that it makes the interface less explicit and the compiler cannot check the
correctness of the parameter. I usually prefer the explicit form, but find the parameterized form
useful when interface changes due to new types become too much to be worth the compile time
checking.

Figure 2. Using role objects for person.

Role Object

How do you represent the many roles of an object?

Put common features on a host object with a separate object for each role. Clients ask
the host object for the appropriate role to use a role’s features.

✓ Direct implementation

✓ If you add a new role you don’t have to change the host’s interface.

✗ Awkward if roles have constraints

✗ Exposes role structure to clients of the host object

Parameterized Type Method

How do refer to the dynamic type of an object?

Use methods of the form hasType(typename) and beType(typename)

✓ New types do not cause a change to the superclass

✗ Interface is less explicit

Working Draft Turning the roles into separate objects

Dealing with Roles 15

This common use of roles does not really provide the same model as Figure 1. In Figure 1 there
are definite rules as to what combinations of roles can be used. You must be one of either a sales-
man or engineer, and you may be a manager in addition. To preserve the rules we have two al-
ternatives. One alternative is to change the addRole method to check the validity of a new role
as in Listing 9. A better way, however, is to alter the interface of person to make the restriction
more explicit as in Listing 10.

class Person {
public void addRole(PersonRole value) {

_roles.addElement(value);
};

public PersonRole roleOf(String roleName) {
Enumeration e = _roles.elements();
while (e.hasMoreElements()) {

PersonRole each = (PersonRole) e.nextElement();
if (each.hasType(roleName)) return each;

};
return null;

};

private Vector _roles = new Vector();
…
}
public class PersonRole{

public boolean hasType (String value) {
return false;

};
…

public class Salesman extends PersonRole{

public boolean hasType (String value) {
if (value.equalsIgnoreCase("Salesman")) return true;
if (value.equalsIgnoreCase("JobRole")) return true;
else return super.hasType(value);

};

public void numberOfSales (int value){
 _numberOfSales = value;
 };

 public int numberOfSales () {
 return _numberOfSales;
 };

private int _numberOfSales = 0;
}
// To set a salesman’s sales we do the following

Person subject;
Salesman subjectSalesman = (Salesman)

subject.roleOf("Salesman");
subjectSalesman.numberOfSales(50);

Listing 8. Salesman as one of a set of roles on person.

Turning the roles into separate objects Working Draft

16 Dealing with Roles

In the kind of situation here, where there are not too many roles and there are restrictions, I tend
to prefer using Role Subtype. Role Subtype provides a simple single class interface. The disad-
vantage of Role Subtype is that the interface of person has to include all the methods defined on
the roles, which is awkward if the role interface is large or volatile. If it is awkward to continu-
ally change the person’s interface then that is the force that drives me towards Role Object. In
most situations where that force is present the set of roles of Figure 2 makes the most sense. Any
rules on combinations of roles must be captured: if they are simple I use the technique of Listing
9, if they are more complex then I will change the interface and use Listing 10 style. In practice
I find that the situations that propel to a Listing 10 style interface are best solved using Role Sub-
type anyway. Remember that you can use one technique for some roles and a different one for
other roles.

A useful variation on this pattern is to make the role objects decorators of the core object. This
means that a client who uses only the features of employee person can deal with a single object
and not need to know about the use of role objects. The cost is that when ever the interface of
person changes, all the roles need to be updated. See [Bäumer et al] for more details on how to
do this.

The final alternative in modeling roles that I’m discussing in this paper is Role Relationship. The
need for Role Relationship comes up when you consider an organization with several different
groups, where an employee might have roles in more than one group. A salesman may begin

class Person {
public void addRole(PersonRole value)throws CannotAddRole {

if (! canAddRole(value)) throw new CannotAddRole();
_roles.addElement(value);

};

private boolean canAddRole(PersonRole value){
if (value.hasType("JobRole")){

Enumeration e = _roles.elements();
while (e.hasMoreElements()) {

PersonRole each = (PersonRole) e.nextElement();
if (each.hasType("JobRole")) return false;

};
};
return true;

};
…

Listing 9. Checking a added role is valid

class Person {

public void jobRole(JobRole value){
_jobRole = value;

};

public PersonRole jobRole() {
return _jobRole;

};
private JobRole _jobRole;

}

Listing 10. Using an explicit interface to capture the constraints of job roles in person.

Working Draft Which Role to Choose

Dealing with Roles 17

with one group, change to another, take retirement, but still do some work for another. In this
case in each role we need to know not just the role, but also which group the employee keeps
the role with. You can think of the role as an employment relationship between the employee
and the group. As soon as you start thinking of a role as a relationship the Role Relationship
pattern of Figure 3 starts to make sense.

Using and implementing Role Relationship is pretty similar to Role Object (see Listing 11), the
main difference is in the fact that setting up and accessing the roles needs a group as a parameter.
If there are constraints between the roles, then you can use the same techniques as with Role
Object.

A common situation with this pattern is that the Role Relationship change over time, and a his-
tory of these changes needs to be kept. There might also be rules that indicate which kinds of
people can have what kinds of Role Relationship with different kinds of groups. Accountability
and related patterns in [Fowler] discuss these kinds of complications further.

Which Role to Choose
Whenever you have a situation that involves roles, never forget that you have several options to
choose from in modeling it.

Are the role significantly different? If the differences are minor the I use Single Role Type. I
don’t worry about it not being flexible enough. If I need the flexibility later, it is easy to refactor
it.

Are there any common behaviors between the roles? If not I might go for Separate Role Type.
I’m always wary of the integrety issue though. This pattern can be more awkward to shift later
on if this crops up.

Only if I know I have significant common and shared behavior, and I need to ensure integrety
do I need to go to the heavyweight options. Here often the key decision is between Role Subtype

Figure 3. Treating the role as a relationship

Role Relationship

How do you represent the many roles of an object?

Make each role a relationship with an appropriate object

✓ Natural if the host object may have more than one role in relationship to another
object.

Which Role to Choose Working Draft

18 Dealing with Roles

and Role Object. Many authors will tell you to always use Role Object, I don’t agree. The key
question I ask is what is the best interface for the users of my classes? Three indicators suggest
Role Subtype: there aren’t too many roles, new roles do not appear often, and there are signifi-
cant rules about what combinations and migrations of roles that can occur. If those forces are
present then I go with Role Subtype. That way I present a simpler interface. I make that decision,
and then choose how to implement it. The implementation is a little harder than Role Object, but
I’m saving my clients that same amount of work. Since there are many of them, that can be a
considerable favor.

I would choose Role Object when either I have a lot of roles, or I often get new roles. These
forces would lead to a large or volatile interface for a Role Subtype. By this point it would be-
come just too much work to keep up the Role Subtype.

I consider Role Relationship when the roleness I’m interested in is all about a relationship be-
tween the core object and some other object. This is a particularly true if the core object can play
the same role with many other objects, or if I want to track the changes to the roles that the core
object plays over time.

class Person {
public void addRole(PersonRole value)throws CannotAddRole {

_roles.addElement(value);
};

public PersonRole roleOf(String roleName, Group group) {
Enumeration e = _roles.elements();
while (e.hasMoreElements()) {

PersonRole each = (PersonRole) e.nextElement();
if ((each.hasType(roleName)) && (each.group() ==

group)) return each;
};
return null;

};

private Vector _roles = new Vector();
…
public class PersonRole{

protected PersonRole (Group group){
_group = group;

};

public Group group(){
return _group;

};

protected Group _group;
…
public class Salesman extends PersonRole{

public Salesman (Group group){
super (group);

};
…

Listing 11. Using a relationship for the role.

Working Draft A Role with Many Players

Dealing with Roles 19

A Role with Many Players
All of these patterns make a common assumption, that a role is something played by a single
core object within some context. But this assumption is not true of all situations that suggest
roles. When I ring up an airline to book a reservation, I am looking for someonw to play the
reservation role for me, but I don’t care which person plays it. In this situation the role is the key
element but the person is irrelevent. I can ring up three times about the same reservation and I
will usually have a different person each time. In this situation I don’t usually know very much
about the role.

A slightly different situation appears when you have consistent on-going dealings with a role
where there is usually a single core object, but it changes over time. This might occur when you
work with a regional salesman for your area. The actual person changes but the role stays the
same. Again the role is more important to you than the person.

I’m not going to discuss these situations in this paper, at least not until a later version. I still need
to think more about the patterns I have seen for this kind of problem. The latter case (a role with
many actors over time) can be modeled using the Post pattern[Fowler].

Summing up
I wrote this article because I was frustrated. This frustration is good source for patterns. Often
it’s the frustration of seeing people do the same thing wrong time and time again. In this case
the frustration stems from people who use one of these patterns all the time, and decry the oth-
ers. I don’t object to any of these patterns — what I object to is a practice of using one of them
all the time.

Design is all about trade-offs, and every one of these patterns comes with its own set of trade
offs. Any of the patterns in this paper can be the right pattern for your problem. Dogmatic ad-
herence to one pattern is not the answer, you have to understand an evaluate the trade-offs. This
truth is eternal in design.

Further Reading
Roles have long been a technique known to the object and data modeling communties. I consid-
ered writing about them in Analysis Patterns [Fowler], but considered the subject too trivial
(rather like saying numbers can support arithmetic). I changed my mind because so often people
will describe one of these patterns (particularly Role Object) as the only solution without talking
about the full set of trade-offs. Hence there is no real treatment of the subject in Analysis Pat-
terns, except for the discussion of Accountability (2.4) which is a use of Role Relationship.

[Bäumer et al] provides a in-depth discussion of implementing Role Object. Their approach
makes the role object a decorator [Gang of Four] of the base object. This means that clients can
deal with the role object without knowing that the base object is in fact a seperate object. If that
helps simplify things for the client, it is a useful tactic.

[Gamma, Extension] discusses a pattern for extending the behavior objects using a similar ap-
proach to that of role objects. The solution is similar to that of Role Object but the intent is some-
what different. The Extension pattern is mainly about dealing with unanticipated changes to an
objects services, while the Role Object pattern is more about dealing with an object playing
many seperate roles.

[Schoenfeld] discusses a couple of uses of Role Object with people and documents.

[Hay] has many examples of role modeling problems dealt with in a relational flavor.

Further Reading Working Draft

20 Dealing with Roles

[Coad] describes the Actor-Partcipant pattern, which is essentially Role Object, and gives many
examples of using it.

I should mention that a proper reference to everybody who has discussed using roles would con-
sume more pages than this paper. Using roles in some way or another is to modeling what if-
then-else statements are to programming. Thus there is a lot that has been written on the subject,
usually in an off-had way that is characteristic when people write about very well-known con-
structs. My apologies to the many people I could have referenced here, but did not.

References
[Arnold/Gosling] Arnold, K. and Gosling, J. The Java Programming Language, Addison-Wesley,
Reading, MA, 1996.
[Beck] Beck, K. Smalltalk Best Practice Patterns, Prentice Hall, Englewood Cliffs, NJ, 1997
[Bäumer et al] Baumer D, Riehle D, Siberski W and Wulf M. The Role Object Pattern, submitted for PLoP
97
[Coad] Coad, P., North, D. and Mayfield, M. Object Models: strategies, patterns and applications,
Prentice Hall, Englewood Cliffs, 1995.
[Fowler] Fowler, M. Analysis Patterns: reusable object models, Addison-Wesley, Reading MA, in press.
[Fowler UML] Fowler M with Scott K, UML Distilled: Applying the Standard Object Modeling
Language, Addison-Wesley, 1997.
[Gang of Four] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: elements of reusable
object-oriented software, Addison-Wesley, Reading, MA, 1995.
[Gamma, Extension] Gamma E, The Extension Objects Pattern, Submitted to PLoP 96
[Hay] Hay D, Data Model Patterns: Conventions of Thought, Dorset House 1996
[Meyer] Meyer, B. "Applying “Design by Contract”," IEEE Computer, 25,10, (1992), pp. 40–51.
[Odell] Martin J and Odell JJ Object Methods: Pragmatic Considerations, Prentice Hall 1996
[Schoenfeld] Schoenfeld A, Domain Specific Patterns: Conversions, Persons and Roles, and Documents
and Roles, submitted to PLoP 96

