
P
R

E
S

TO
N

 M
A

C
K

/R
E

D
U

X
 P

L
U

S

18 BETTER SOFTWARE JULY/AUGUST 2004 www.stickyminds.com

DON’T
JUST

BREAK
SOFTWARE

MAKE
SOFTWARE

Test and Measure

How
storytest-
driven
development
is 
changing 
the 
way 
QA,
customers,
and
developers
work.
by Tracy Reppert

STORYTEST-DRIVEN DEVELOPMENT (STDD)
IS AN EXTREME PROGRAMMING PRACTICE.

The basic premise is that before
any code is written, a team takes 
a story (or rough idea of a require-
ment) and fleshes out that story by
producing an executable “story-
test.” Opponents say that STDD is
“cowboy coding,” or “snake oil,” or 

.

.



STDD rates high with the development team 

at Nielsen Media Research. Standing (l to r):

Thomas Hund, Praseed Thapparambil, and Pam

Smoot. Seated (l to r): Cheryl Redding, Rhoda

Foxworthy, and Merrilee Albright



just “a hindrance to real work.” Propo-
nents argue that STDD produces the sim-
plest system possible and is the wave of
the future, the new frontier.

EVERYONE GETS A SAY
With traditional acceptance testing, de-
velopers would create an entire system,
declare it finished, and then submit it for
acceptance testing. This mostly manual
testing tended to get bogged down in pa-
perwork and occurred so late in the de-
velopment lifecycle that any mistakes
were very expensive to fix. Even if the
system met all of the stated requirements
and passed through acceptance testing
with flying colors, the customer, who
hadn’t seen the system since the require-
ments meeting, often was left feeling like
he had not gotten what he wanted.
STDD makes it possible to formalize the

expectation of the customer into an exe-
cutable and readable contract that pro-
grammers have to obey if they want to
claim a working system.

“STDD gets the right people collabo-
rating at the right time,” says Joshua
Kerievsky, XP coach and founder of In-
dustrial Logic, Inc. STDD brings together
the customer, developers, and testers be-
fore any code has been written. They col-
laborate to identify a specific piece of
functionality, or “story,” to be worked
on. Customers and testers then specify
criteria to validate that the story works
and create an executable document that
can be accessed by anyone on the team.

“When testing is done after the fact,
customers simply say that the system is
broken when it doesn’t meet their require-
ments,” says Somik Raha, XP coach for
Industrial Logic. “With STDD, there is a

specific contract for acceptance, so dis-
crepancies are quickly resolved. There’s a
clear context for customers and develop-
ers to have a conversation and weed out
misunderstandings. The risk of building
the wrong system is much lower.”

Ken Auer, president of RoleModel
Software and one of the earliest practi-
tioners of STDD, agrees. His team, along
with Ward Cunningham, first used
STDD to produce a software system in
1999. “STDD made it easier to nail
down what our end-users wanted,” re-
calls Auer. “By having executable re-
quirements for each story, we were able
to know when we had completed stories,
which made project tracking a whole lot
easier and better.”

NO ONE HAS TO BE 
THE BAD GUY
Raha explains that not only does STDD
relieve stress; all the involved parties love
the process. “Customers love it because
of the new level of confidence they get—
instead of just hoping the development
team has understood the requirements
correctly. Developers love it because
there’s no way they can be accused of

20 BETTER SOFTWARE JULY/AUGUST 2004 www.stickyminds.com

Test and Measure

STORYTESTS AS PROPS FOR CONVERSATION
In order to estimate a story, programmers have to understand

what the business expert wants. They learn this through face-

to-face conversation. The business expert describes the feature,

explains why it’s useful, and gives examples, perhaps scribbling

them on a whiteboard. The programmers ask questions, split

the feature into constituent parts (smaller tasks), ask more

questions about those tasks, and sometimes propose variations

on the feature that might be simpler to implement.

EXAMPLES are particularly useful because they ground the con-

versation in something concrete and keep important details

from being lost in abstract discussions and vague generalities.

To illustrate, let’s suppose a business has a rule that, for ac-

counting purposes, all months are treated as having thirty days.

(Some bonds are valued under a similar rule.) One of the stories

might be “Implement the 30-day rule.” The business expert

might write something like this on the whiteboard:

1 April to 1 May is 30 (as normal)

1 Feb to 1 March is 30 (even though 28)

1 Jan to 1 Feb is 30 (really 31)

QUESTIONS should follow. A programmer or tester might ask if

it’s really true that the number of days from 1 January to both

1 February and 31 January is thirty. The business expert would

answer that it is. Then someone else might ask, “So, it’s twen-

ty-seven days from 1 February to 11:59 PM on 28 February, but

the next minute it’s thirty days?” The business expert might

start to answer “Yes,” only to be interrupted by someone say-

ing, “Not if it’s a leap year,” which would lead to a discussion

of the relevance of leap years, and then, perhaps, to whether

time zones matter.

That discussion might well be cut short, because the point

here is for the programmers to have enough information to es-

timate accurately, not for them to know every last detail.

“Creating the expected results 
was quite challenging, but it 

was rewarding when they ran.”
—MERRILEE ALBRIGHT

A GLIMPSE
OF STDD

IN ACTION.
by
Brian
Marick



building a system that is not acceptable.
And QA loves it because programmers
aren’t viewing them as the bad guys,”
says Raha.

STDD challenges the notion that QA
has to play a rival role to a programming
team if they expect to be able to spot de-
fects. In practice, teams find that they
are saving a lot of time by having QA
help produce storytests from the begin-
ning. “A tester is sometimes viewed as
an adversary, when all they are trying to
do is ensure that the delivered product
functions well,” says Merrilee Albright,
lead SQA analyst at Nielsen Media Re-
search and member of an STDD team.
“I’ve been testing a long time, and have
found that my role on this team definite-
ly has more respect than it might in the
normal software development process. I
can utilize the expertise of other team
members to help me create tests. Having
the customer available to review the test
results and make suggestions immediate-
ly has proved invaluable. Creating the
expected results was quite challenging,
but it was rewarding when they ran and
ensured that the system was functioning
as expected.”

THE FIRST STEP CAN 
BE A BIG ONE
If STDD is so great, why do so many peo-
ple distrust it? Perhaps some of the skep-
tics of STDD haven’t experienced it since
its inception. XP and STDD definitely had
some growing pains. Joshua Kerievsky ex-
plains, “In the early days of XP, we did a
lot of unit test-driven development and
would automate storytests only after we’d
written our code. The trouble with this
approach was that it was often hard to get
subject matter experts to define storytests,

which meant that with successive itera-
tions we would get further and further be-
hind on the number of storytests we still
needed. That produced higher defects,
since the lack of sufficient story details led
to code that failed to fully satisfy customer
expectations.” He adds that STDD now

helps teams obtain the necessary amount
of story details when they need it—before
writing code.

Even now that most of the quirks
have been worked out, people may still
be wary of such a big change. “It was dif-
ficult to trust the process in the begin-
ning,” says Pam Smoot, senior project
manager at Nielsen Media Research,
which began implementing STDD for a
major data-warehousing project, “but it’s
so much better than what we used to do.
Having expected results created upfront

by a business/QA person helped us find
miscalculations, misinterpretations, and
miscommunications right away rather
than late in the project.”

Skeptics begin to see the value of
STDD in just a couple of weeks, accord-
ing to Smoot, though it can take a few

www.stickyminds.com JULY/AUGUST 2004 BETTER SOFTWARE 21

Test and Measure

CONVERSATIONAL EXAMPLES 
BECOME STORYTESTS
Once the iteration is planned, it’s the job of the programmers

to produce features that satisfy the business expert, and it’s

the job of the business expert to support them—mainly by be-

ing available for further conversation. For example, a program-

mer might realize that she doesn’t know what the program

should do in some special case, so the business expert has to

tell her. Or a programmer might realize that the code is so

structured that it would be trivial to add a new wrinkle to the

feature, so the business expert should tell her if the new wrin-

kle is a good idea.

The business expert should also help with the tests. The

table at right shows a starting set of tests that came up in the

imaginary planning meeting we mentioned earlier. (Ignore the

first row for now.)

Who writes that table? It’s entirely up to the team. Some

business experts might be happy writing such tables them-

selves. In other cases, it might be dedicated testers or the pro-

grammers. What’s important is that the tests get written effi-

ciently and that the business expert believes that seeing them

pass will increase his confidence in the program.

This set of tests needn’t be complete. It need only be

enough for the programmers to get started. As they work on

getting those tests to pass, other people can contin-

ue writing tests. The test-driven style is to make tests

pass one at a time; while working on one test, the

programmer doesn’t worry overmuch about what

tests remain. So it doesn’t matter if some of those

tests are not yet known. These storytests do not necessarily

completely replace conventional testing. They’re designed to

build quality into the product. Someone else still needs to cre-

ate tests to detect where the storytests fell short of the goal 

of preventing bugs.

“It was difficult to trust 
the process in the beginning,

but it’s so much better than 
what we used to do.”

—PAM SMOOT

CalendarFixture

from to elapsed() actual()

1 Apr 2003 1 May 2003 30 30

1 Feb 2003 1 Mar 2003 30 28

1 Jan 2003 1 Feb 2003 30 31

1 Jan 2003 31 Jan 2003 30 30

1 Feb 2003 28 Feb 2003 27 27

1 Feb 2004 29 Feb 2004 28 28

1 Feb 2004 1 Mar 2004 30 29

>continued



months to fully absorb it, explains her fel-
low team member, product manager Rho-
da Foxworthy. “Now everyone on the
team really sees its value and is excited
about taking it outside the team, although
we’re not sure how,” says Foxworthy.
“Our next big challenge, when our plat-
form team is retired, is continuing its spir-
it and use in a production environment
where there are walls and naysayers.”

CHANGE IS HARD—
BUT WORTHWHILE
Many STDD practitioners encounter an
ironic reaction to their success: resent-
ment from the rest of the organization.
“It’s weird that that happens, but it
does,” says Ward Cunningham, whose
FIT tool is typically used for STDD be-
cause team members with diverse back-
grounds can understand it. Cunningham

continues, “It’s just one of those quirks
of human organization. Attitude is based
on experience, and eventually people
shift their attitudes and realize this
method is to their advantage.”

Considering such human quirks is key
to successfully integrating STDD. “Peo-
ple always resist paradigm shifts,” says
Raha. “So it’s especially important to in-
troduce STDD when a project has just
begun and people are still motivated.”

As with any XP practice, keeping the
STDD process going can be challenging
if it’s considered to be merely an option
and not a rule. “STDD should be fol-
lowed as a policy from the top down,”
says Narkeeran Narasimhan, a testing
specialist for Ansys Corp., which devel-
ops engineering simulation software and
has been doing XP since 2002. “Over a
period of time, these processes can get

compromised if, for example, new devel-
opers don’t want to learn a method, and
their managers—not wanting to upset
them—don’t want to enforce it.”

The key to making the change is just
getting people to try things, explains Cun-
ningham. Developers who do try STDD
tend to love the influence it has on a soft-
ware design. “When I started doing
STDD, I was amazed at how much simpler
my code became, versus the code I’d writ-
ten using either upfront design or minimal
design with unit test-driven development,”
says Kerievsky. “Following STDD closely
enabled me to produce designs I simply
would not have anticipated.”

“There’s really no situation in which
I can see STDD not being the best
process to use,” says Thomas Hund, se-
nior SQA analyst at Nielsen Media Re-
search. “As well as it’s worked for us,
I’m a believer.” {end}

Tracy Reppert is a freelance journalist
who has written about technology for
the New York Times, the San Francisco
Chronicle, PC Magazine, and Wired. She
lives in Berkeley and can be reached at
tracy@industriallogic.com.

22 BETTER SOFTWARE JULY/AUGUST 2004 www.stickyminds.com

Test and Measure

STORYTESTS BECOME CODE
Making a table of storytests pass requires two steps.

THE FIRST STEP is to write a fixture that translates the

table into executions of the program. (In the case of

the example in the sidebar on page 21, the fixture is named by

the first row of the table: CalendarFixture.) Usually, the fixtures

do not drive the graphical user interface. Instead, they go “be-

low the GUI” and make calls to the business logic of the pro-

gram in the same way that the GUI does. This makes tests

more maintainable, and it also helps to align the language of

the program with the language of the business. (If business

people talk of buying bonds or negotiating leases, it makes

sense for the code to use words like “bond” and “lease” and

“buy”. This style of programming is called “domain-driven de-

sign,” after Eric Evans’s book of the same name.)

THE SECOND STEP is to make the test pass. In some cases (like

our calendar example), that’s straightforward. The programmer

runs the table, sees that a row fails, changes the code, runs

the table again to see that the row now passes.

In other cases, the changes needed to make the tests run

are too large for that. Fans of test-driven design like to run

tests often. They don’t like to make many changes before

gaining the reassurance of seeing a new test pass and all pre-

vious tests continue to pass. So they will break their coding

task into smaller pieces. They’ll determine a chunk of code

that needs to change, write a programmer test that describes

the change (using a programmer testing tool like JUnit or

NUnit), make the change, and check it. They’ll proceed that

way, test by test and chunk by chunk, until the larger story-

test passes.

This process continues until all the tests for the story pass.

Notice that these tests may change at any time before the end.

Any one of the business experts, testers, or programmers may

add or change a test if it helps complete the story more surely,

quickly, or smoothly. However, the business expert is the final

arbiter over whether a test is a correct example of the feature.

When all the tests pass, the story is done, and a new story can

be started.

Brian Marick has worked in testing since 1981. He is the au-

thor of The Craft of Software Testing, and is the technical edi-

tor for Better Software magazine. Contact Brian at marick@

testing.com. Read other writings at testing.com. (Author’s

note: Cheryl Redding and Praseed Thapparambil of Nielsen

Media Research, and Chris Wheeler of Sciex contributed to

this series of sidebars.)

>continued

“There’s really no situation 
in which I can see STDD not

being the best process to use.”
—THOMAS HUND



www.stickyminds.com JULY/AUGUST 2004 BETTER SOFTWARE 23

Test and Measure

So how does a team get started doing STDD? For Nielsen
Media Research, changing to STDD was part of the shift
to XP. First, the main players and decision makers got to-
gether and held a two-day overview boot camp. Once
they had senior management’s approval, they formed the
group and moved into an open workspace soon after-
wards. Next, they bought books on XP for all team
members and held a five-day intensive XP boot camp.
They retained XP experts as trainers and coaches for the
first four months. Their QA manager continuously found
and fed them pertinent articles. Finally, they held a two-
day intensive retrospective that delved into the pluses and
minuses of their first thirteen weeks.

XP coach Joshua Kerievsky offers these specific steps
for getting started with STDD:

1
Define Stories

Work with subject matter experts and analysts to define
stories: roughly defined chunks of functionality. We typi-
cally use index cards for stories. Good story headings are
no longer than five words and use the active voice. For ex-
ample: “Book a Room,” “Calculate Capital for Term
Loan,” or “Export Risk Report into Excel” are good story
headings. The details of a story give enough information
for programmers to make decent time estimates for imple-
menting stories. For the story “Book a Room,” the details
might be “Allow user to make a reservation for a single
room, assuming no special rate discounts or late check-
outs.” For more details on how to write good stories, see
the new book User Stories Applied by Mike Cohn.

2
Define Storytests

Once stories have been defined, you can begin writing
storytests. This is best done through the collaboration of
subject matter experts, testers or QA persons, and pro-
grammers. A storytest helps verify that a story works cor-
rectly by documenting what inputs are supplied to a sys-
tem and what outputs are expected. A document that
contains a storytest can include other useful information,

such as sentences to describe a story or a description of a
formula that is being exercised by a storytest.

It takes some time to learn how to best model a story-
test in a tabular form using Ward Cunningham’s FIT
framework (http://fit.c2.com). “You need a day or two,
unless you’ve never done Java,” says Cunningham. Ward’s
site offers a number of open source sample applications
that let you practice without getting confused with your is-
sues at work. Cunningham recommends trying to under-
stand the music player, use the tables there to make it do
something new, and then apply it directly to your work.

Once you have enough experience with that, decide
whether to use a Column Fixture, Row Fixture, or Ac-
tion Fixture. In most cases, whatever tabular form allows
you to present the storytest in the most readable format
is probably best, because the main audience for a story-
test is nontechnical people. In practice, the easier it is to
read a storytest, the more work programmers will have
to do behind the scenes to map the storytest to the classes
in the production code. That’s okay because once pro-
grammers begin to write such mapping code, it will be-
come increasingly easier to do so for future storytests.

3
Check In Storytests

It is best to check in storytests to your version control soft-
ware as soon as they’ve been created. We do this as soon as
a storytest has been defined. When developers integrate
their code, they ought to see that new storytests have been
checked in. This informs them that they can begin working
on the story(ies) associated with the checked in storytest(s).
In general, programmers should not begin programming a
story until they have a storytest that is failing.

4
Program the Storytests

Once developers have a storytest, they will begin writing
test code to show that the storytest is failing. If the team
is using FIT, this involves defining the appropriate sub-
class of FIT fixture class and then delivering production
code to make the storytest pass. During this time, it is
typical and optimal to do unit test-driven development in
conjunction with STDD. This helps you to evolve pro-
duction code that has sufficient test coverage. The combi-
nation of these testing techniques leads to fine-grained
unit tests for classes and medium- to large-grained story-
tests for the features of the system. Throughout this
process, programmers check in code, unit tests, and
storytests when they are passing.

GETTING
STARTED

WITH STDD.




