
CHARTERS AND CHARTERING:
IMMUNIZATION AGAINST

 FORESEEABLE PROJECT FAILURE

This is the pre-edit draft of a Chartering article written by III. The edited version was published in

the January 2001 edition of STQE Magazine.

When does a project really begin? Where do the stewards of organizational resources
declare the effects they hope to achieve when all the resources are gone? How can
external observers determine after the fact that the project was successful? Who gets to
say that the work is good and the effort may continue? Why do so many projects create
so much difficulty for so many people and organizations?

A project is a finite undertaking with intentions and limited resources. It is different
from a service or a product or a discipline or an occasion. It serves as a rallying point
for participants from two very distinct groups of folks. The two groups are those who
have responsibility for organizational intentions and resources, and those who practice
their craft creating information capability to further the organization’s ultimate
purpose. In this discussion, I shall refer to the first group as GoldOwners (based on the
21st-century version of the Golden Rule: Whoever Has The Gold Makes The Rules) and
to the second group as Developers. In every system effort, the developers are spending
money that belongs to the GoldOwners (or, perhaps, the GoalDonors). In return for the
use of resources, the developers are obliged to return some sort of value-added
consequence to the organization. Chartering provides a mechanism for negotiating and
formalizing the understanding between the two groups, and the Charter is the official
container for the shared contractual agreement between both sides.

I dream of the day when senior business managers will walk into the office every
Monday morning or so with fully-formed Charters already in hand. They will have
sorted through the research, pondering and decision-making to focus the attention of
the organization and the development crews toward establishing expectations, aligning
the perspectives of all involved players, and securing commitment for the successful
completion of important work.

When I wake up, the situation is quite different. Work often gets underway in the
absence of an explicit contract, with the result that people launch off in various
directions, understandings are diverse and changing, time and money drift away while
informal chats try to determine the next best thing to do, various individuals step up
and do their best from a narrow perspective to keep everyone else’s head above water,
and results diverge from expectations.

In far too many unchartered projects, the developers wind up in the gunsights of the
money-spenders, taking the blame for any and all hiccups that unfold during the life of
the project.

In my experience, a primary cause of the difficulty in getting started competently arises
from a galling diversity in the perceptions around the topic of ?requirements”. Study
after study points out that a majority of project (and system) failures come from
problems with ?requirements”. I’m going to take a stab at that issue as a basis for
carving out some space for the Charter concepts, and for establishing a more workable
taxonomy for the statements we make to each other during project deliberations.

Quirements abound. I’m using a made-up word to characterize the total set of
statements representing the wishes, hopes and desires of interested parties when they
talk about their view of a system to be built. In the first rounds of discussions, business
people get lots of encouragement to say everything they can think of that might give
guidance to developers about the content and operation of the system. In most cases,
these declarations become ?the requirements”, and constitute the reference for all
subsequent development work. The underlying rationale for this approach holds that if
it came from a business person’s mouth, it must be gospel. Project members capture the
statements as narrative bullet-points, number them, load them into a requirements
management spreadsheet and then spend the rest of the life of the system trying to
figure out what they mean.

The first dilemma emerges from the use of natural language as the primary medium of
communication in this endeavor. Natural language is wonderful for love poems and
political speeches, where there is value in the richness of nuance and ambiguity. If, on
the other hand, we are trying to be specific about very particular kinds of work and
flow that must proceed correctly in order to support the enterprise, we have a problem.
What we need is a much more precise style for saying what must be true about our
efforts, and about the systems that those efforts produce.

The next challenge is to figure out a way to package this information in a way that
allows the container to suggest the content. In the cases where I have dealt with a
collection of these ?requirements” statements, I have conducted my own private parsing
of the bullet points. The variety of categories is often breath-taking. If you try this
yourself someday soon, I suspect you will find most of the following:

- Organizational values
- Political guidance
- Shop best practices
- Intermediate project scheduling concerns
- Mandates about pre-selected technology
- System objectives
- Project objectives

- Organizational objectives
- Resource availability/constraints
- Bright Ideas
- Business justifications
- References to the insides of other systems
- User procedures
- Vendor relationship issues
- Methodology dictates
- Formats and layouts
- Mission statements
- Protocols about system operations
- Risk avoidance strategies and tactics
- ???

Certainly, all of these concerns are real. Yes, it’s important that the team know about
them. Of course, we want to honor the willingness of the business people who have
worked so hard to share with us what they know, think and feel. What would help here
is a better way to organize and save this shared knowledge and perspective so that the
appropriate portions of it are readily available to the people who need it, when they
need it, in a form that will fully support the work they have to do.

Quirements is based on the Latin verb quaerere, which means to ask or inquire. When
we add the two-letter prefix ?re” to the front of the ask word, the intensity changes. In
this instance, the prefix means ?again”. What I propose is that we limit our use of the
term requirement to those policies and rules that hold true over time, over and over
again, within the boundary of our system. With this approach, technology and its
symptoms have to find another container, because every time we think the latest and
greatest box or language or operating system is the right answer to our implementation
challenges, a newer something comes along to take its place. A more insidious
consequence of including technology aspects in a requirements model is the drastic
reduction in shelf-life of the model. I hold a personal metric that suggests that over the
entire lifetime of a system, roughly 70% of the gross resources expended are used to
discover and clarify true requirements. That’s a huge investment. If it were just a
phase, it might seem more tractable; instead, I’m talking about the entire duration from
blue-sky idea through development, operations, changes and ultimate retirement. In
order to extend the payback period of the outlay, the result should last for a while. If
technology details reside in the model, then a change in the technology will dictate a
change in the requirements view; and the requirements work starts all over again. I
suspect that modelers instinctively realize this is true, and are then generally reluctant
to be rigorous and thorough in detailing requirements, because they know that (with
design facts included in the approach) they’re just going to have to be constantly
revising the models of both requirements and design. The upshot is a brief pass
through requirements before settling in with design work, where most of the exhaustive

work on organization policies emerges in the details of the design models, fragmented
and brightly wrapped in implementation pieces of the system.

Based on timing and location, we can explicitly and reliably distinguish objectives from
requirements from implementation. In order to talk about how we can accomplish this
partitioning, I need to offer definitions of some terms. Along with these definitions, I
will suggest examples of each from the history of the Cold War, to show how they
complement each other.

Every organization has an interest in its Mission, Objectives, Requirements and Design.
I have been to so many shops where these terms are loosely used, with some groups
making them seem almost synonymous with each other. In fact, they are very different,
and serve very different purposes for different roles in the organization.

Mission - From the Latin verb mittere , to send, comes the word mission. I define it as a
one-liner that sets a direction for the work to follow. It should be both comprehensive
and compelling. If it goes on for paragraphs or pages, it loses its impact, and drops off
everyone’s radar screen. A well-formed mission statement should suggest everything
involved in its pursuit, almost in the sense of a calling. Missions persist; they are
always in force (as opposed to the military slant on this term, where a mission is a
single journey out and back to do one thing), and they endure from project to project
and from system to system. In the Cold War example, a mission of the Free World was
to demonstrate the superiority of our system and values versus those of the
Communists. (A strategic choice then directed our national energies to the arena of
space adventures to play this out)

Objective - This one derives from the Latin verb jacere, to throw. I like the flavor this
brings to the word, in the sense that you toss an objective out there in front of your
future, and then manage the present through time to catch up with the measure
described in the objective. A good technique for discovering objectives is to interrogate
?quirements” with the question that every four-year-old keeps asking: ?WHY?”. If the
quirement is about activities (work that takes place inside the system boundary) or
deliverables (work products that leave boundary and head for the outside world). the
four-year-old’s inquiry will ultimately lead to an objective: a statement of external,
measurable, policy-based effect, as of an instant in future time. The objective should be
framed in a way that makes its assessment binary: we either achieved it or we failed. In
the Cold War example, President Kennedy announced in May of 1961 (following
Sputnik and Yuri Gagarin) the objective of sending a person to the moon and returning
them safely by the end of the decade. And we did it. Objectives create alignment
among participants by making clear how we are going to measure success without
having to describe what happens between now and then. When everyone knows what
the game is, they are individually empowered through knowing whether their local
actions or decisions will help or hinder the measurable effect by the assessment date.

Objectives come and go. After the success of the Apollo 11 moon-landing, that objective
was evaluated and retired. (The mission persisted, and gave rise to a host of additional
objectives, one of which even included a successful space rendezvous with the Soviets
in the Soyuz program.) The location and timing distinction between objectives and
requirements makes it easier to distinguish them from each other: the assessment of the
success of objectives takes place outside the boundary at a specific point in time,
whereas the set of requirements holds true inside the boundary over time. For each
approved objective, there is an inevitable set of requirements which will have to
continuously behave properly in order for the measurable effect to occur by the
appointed time. You can always work from the objectives to the requirements; I have
yet to confidently approach it in the other direction.

Requirement - The iteration prefix ?re”attached to the ask word suggests the definition:
a statement of organizational policy, generally expressed in terms of information, that
holds true over time. The most effective way for me to get a grip on requirements is to
indulge a fantasy of Perfect Technology. What if, for a given system boundary, I had
absolutely perfect technology with which to implement everything inside. The
characteristics of Perfect Technology are: infinite storage capacity, clean and transparent
interfaces, processing power faster than the speed of dark, a location only at a point in
three-dimensional space, always up, zero cost, implementation before I finish thinking
about it, even faster changes, and the universe would pay me to use it. With the fantasy
in place, and with clear objectives to work from, all I have left to think about are the
true requirements. A good way to organize that thinking is to partition by Key Events,
which provides a framework for capturing the details of content, transformation,
behavior changes and data manipulation and retention. Requirements are free. There is
zero cost associated with a GoldOwner declaring that employees are described by a set
of attributes or that the following algorithm will set the values for commands issued to
external devices. (Certainly there is the nominal cost of discovering and recording
those policies; the policies themselves are free). Whereas an objective leads to an
inevitable and finite set of requirements, a requirement is open to an infinite number of
design and implementation possibilities. In our Cold War story, with the mission to
show that our way was better, and the objective to return safely from the moon within
the decade, a whole host of requirements emerged. For instance, there were ongoing
requirements about communication between the ground and the Apollo vehicle:

Key Events for messages between the two described the content, fidelity, cycle time and
frequency obligations necessary for successful accomplishment of the objective. (As a
practical matter, the design choice for implementing the communications requirements
turned out to be radio, even though there were lapses in fulfilling the requirement
during passages behind the moon and re-entry into the Earth’s atmosphere. Because
the objective was clear, the Apollo managers reasoned that they could provide
workarounds or gracefully absorb the downtime without ultimately jeopardizing the
objective.) Another requirement, ongoing, was the support for and monitoring of the

pulmonary or breathing activities of the passengers. The specifics had to do with
respiration rate and O2 concentration in the blood. Lots of different design options
could have supported this requirement. The Apollo 1 iteration, intended to rehearse
the assembly of the vehicle, the transfer to the launch pad, the connections for fueling
and communication, the access available for the astronauts and their comfort and
effectiveness in the capsule, made a design choice of pure oxygen in the command
module. The tragic deaths of Chaffee, Grissom and White pointed out the error of that
choice. The requirement was still true, and subsequent design thinking yielded a blend
of elements to mix with the oxygen in order to fulfill the requirement and have a much
better chance of accomplishing the objective.

By this definition of requirements, all levels of detail come into play. Some shops hold
the view that requirements are only high level, overview considerations, and that
moving toward finer granularity is inherently the subject of design. It turns out that
there are both generalities and details in the requirements, as well as generalities and
details in the design. I suspect that the source of this misapprehension is the confusion
of objectives with requirements, along with the traditional use of the ?what/how”
guideline as a way to distinguish the organizational view from the technology view.
The real distinction that emerges from the what/how spectrum is one of differing detail
rather than of different subject matter. There are requirements ?whats” along with the
details of their ?hows”just as there are design ?whats” supported by technology-specific
?hows”.

Design - The Latin noun signum means a mark or a sign. This suggests a representation
of some kind that stands for the tangible stuff that will make the system operate
properly in a physical world. I define design as a blueprint that shows the use of,
interactions among and control over components of technology selected to fulfill
requirements. Any discussion during system development that refers to things that
cost money or take time or can be ordered from a catalog or you can bust your knuckles
on is a design discussion.

With these definitions in place, we can now turn our attention to the contents of a
Charter.

I suggest that a project is the consequence of a Charter. Prior to the formal ceremony of
agreeing and committing to the stipulations of the Charter, we lack a project budget
with authorized funds with which to pay for early discussion and exploration. I see this
early work as management R+D, as part of their ongoing obligation to explore
possibilities and opportunities for the organization. One amazing benefit of Charter
exploration is the dismissal of lots of Bright Ideas that would truly waste time, money
and good will if someone tried to follow through on them. If there is major difficulty in
forming and agreeing on a Charter, imagine the grief that would emerge from plowing
ahead anyway.

The basic charter has four sections:
- Objectives
- Boundary Exhibits
- Committed Resources
- Authorizing Players

Every shop that has worked on Charters with me has inevitably added additional
content they felt was necessary in order to gain wider acceptance. I have generally
counseled against doing so, because of the dilution effect that results from trying to
cram everything we know into a single presentation. There are generally other more
appropriate containers for the additional content; I leave it to practitioners to make their
own choices about where the other material might best find a home.

The charter objectives come in at least two flavors: External Objectives, which the
GoldOwners crave and evaluate; and, Internal Objectives, which usually have to do
with intentions for the development shop, that need to be pursued within the same time
frame as the External Objectives, utilizing GoldOwner resources. For example, a
powerful External Objective might be an improvement in the turnaround of missed
payment notifications from four days to twenty minutes by the end of next quarter; at
the same time, there might be a significant need for the shop to extend the percentage of
re-use in code for new systems from 10% to 60%, and to have that in place by the end of
the year. The GoldOwners are paying for the Internal Objectives anyway, it makes
good political sense to be open with them about how their resources are improving
capabilities as well as effects

Objectives are hard things. I’ve been focusing on them for the last two decades, and I
still find it challenging to crystallize organizational intentions in a way that creates
focus for the system community in a way that highlights outcomes while retaining a fair
amount of internal autonomy. One approach that helps me is to imagine explaining to
a visitor from the starship what it is we are all about, and how they could go see for
themselves that we have done what we set out to do. The temptation is to look at the
work we do as objectives, or point to the deliverables we create as objectives. At the
end of the day, GoldOwners are far less enthusiastic about projects or systems than they
are about external business effects that tie in to the larger strategic view they build for
the organization. They would be perfectly happy to dispense with projects and systems
forever if they could still make the difference they want to make in the outside world.
Another caution: in environments where management has historically demonstrated
success by their own pronouncements rather than by hard measurements, there will be
enormous resistance to agreeing on well-formed objectives. In some cases, it may be the
first time in their careers that anyone has had a way to hold them accountable for
meaningful measures of their work. The remedy for this is to demonstrate that hard
evidence of success is in their best interests, and to suggest that their careful thought
and consideration at the start of the effort will shortstop a host of pitfalls that would

otherwise occur much later, when the solutions are much more painful. I hold another
metric that seems conservative and that I would love to prove somehow: for every
person-hour spent on diligent and clear-headed consideration of the objectives at the
start of a project, there is a savings of roughly one person-month in reduced wheel-
spinning, chasing down blind rabbit-holes and reframing the shared community
perspective concerning the work at hand. While working on objectives, it is useful to
stay in touch with any mission statement based on the same boundary, both for
inspiration and preservation of sanity.

Boundary is everything. In each and every discussion about the workings of a system,
statements have meaning only in relation to the boundary. In the general description of
how to edit or filter a transaction, the location of the boundary will determine whether
the internal technology does the job, or the filtering takes place outside the boundary
before becoming input to the system. I use the term boundary where others might talk
about scope or context. When I look up scope in the dictionary, it has to do with seeing;
context speaks to the outlying items that surround a thing; what I need is a word that
clearly designates a limit or an edge so that I can clearly tell what’s in and what’s out.
The sense of boundary is really one of authority and accountability. For a project, there
must be a territory within which the team has control and responsibility, and outside of
which they must take questions and decisions to some other source for answers and
choices. The traditional method for declaring the size of a system has been to list
?functions” included and excluded. That might work if all hands shared the same
understanding of just what a ?function” is, and if there were any rational way to assure
shared understanding of the inclusions and exclusions of a particular ?function”. I find
that a much clearer way to sustain confirmable views of system size is to use two
exhibits: the classic Context Diagram, from Structured Analysis, with fully-fleshed-out
content definitions for all of the named pipelines in and out and descriptive names for
all the pieces of the outside world with which our system shares traffic, along with a
roster or census of all Key Events for which the system must have a planned response.
Key Events originate outside of the boundary, and can arise from choices or timing
considerations. They reflect the most comfortable way that users appreciate their
systems: as black boxes with mysterious insides that can provide useful service when
prompted or triggered by information or commands. A rigorous portrayal of Key
Events would show, in tabular form, for each Event: the external occurrence; the named
pipeline through which the outside world informs the system that the Event has taken
place; a phrase (or phrases) in verb-noun format that describe the work the system must
do when it finds out about the Event; (for each response phrase) a listing of all
information items inside the system that the response activity must interrogate or
modify or compose or remove; and a classification of the response work as data
manipulation or behavior change. The pairing of these two exhibits makes exquisitely
precise the capabilities of the system. It can only be triggered by the Events on the list,
and it can only work with the data available to it. Over time, as changes occur in the

amount or type of work the system covers, those changes will usually result in revising
the Diagram or the Events list, or both.

The third section of the Charter, Committed Resources, really gets to the heart of the
matter. Here the GoldOwners have a chance to reckon the value of achieving these
objectives consistent with this boundary. We can move beyond the classic brouhaha
that emerges when an idea about a new system floats in, the developers are burdened
with saying how much it will cost the organization to build and deliver, managers
respond by saying ?that’s the wrong answer”, developers are then in a position to low-
ball the projection in order to get any approval to do anything, the real costs far exceed
the agreed amounts, and the developers get to be the bad guys. Comedy is never
pretty.

In a Chartering organization, the GoldOwners make business choices that determine
what it is worth to accomplish the effects, in line with other competing interests, guided
by larger concerns portrayed in the mission and strategies. In an extreme example, the
GoldOwners might call for a complete overhaul (as an objective), of the entire universe
(as a boundary), and be willing to invest $1.32 and from now until next Thursday to get
it done. In the negotiations, I hope the developers will invoke a lovely two-letter
Anglo-Saxon word --NO!--and counter with a proposal to accomplish a partial overhaul
of a portion of the universe for $2.79 and two weeks from Friday. Part of the intent here
is to encourage and allow the GoldOwners to see systems as a business rather than a
technical priority.

There are a number of flavors of Committed Resources:
S Dollars
S People Time (as contrasted with the day of assessment for the achievement of the

Objectives)
S Tools (for the developers as well as for folks who interact with the installed

system)
S Training (as above)
S Access, to places/sources of necessary knowledge, and to authoritative decision-

making when the occasion demands
S Working Environment, where developers have enough privacy and space to do

high-quantity, high-quality work
S Permission To Iterate, rather than have their first-cut results seized upon and

installed as working systems

A necessary aspect of this concept relies on the development shop to have sufficient
metrics history so that they can partition a very early model of the proposed system
into meaningful units which can then serve as a basis for projecting the historical
delivery cost per unit and come up with a reasonably confident basis for accepting or

declining the GoldOwners’ offer. In the absence of this history, everything is just a
guess anyway.

Anyone who has been to a car dealership to purchase a new vehicle remembers that the
first meaningful dialogue centered on how much they were willing to spend. Only with
that number in hand does the rest of the conversation make any sense. If a transaction
as crass as buying a car can start out that way, it seems reasonable to expect that the
negotiations over a new system can have at least as much information to begin with.

Once having committed to the resources, there are now expectations and obligations on
both sides, along with a much more valuable circumstance: there is a balance between
the desired accomplishments and the resources available to allow them to come to
completion.

The final chunk of the Charter lists the Authorized Players. We specify the names of
flesh-and-blood human beings who are authoritative witnesses for the following two
simple questions:

- Is the work to date acceptable?
- May we continue?

It is hollow to make reference to policy documents, or job titles or departments from the
organization chart when what we really need are individuals who have a stake in the
outcome and sufficient preparation to be helpful in evaluating progress and plans. It is
a show-stopper for a Charter to be without real persons as Authorizing Players.

A challenge for Chartermakers is to keep the document as concise as possible. Excess is
the enemy of clarity. I often use the mission statement as a preamble to the Charter; it
helps keep the community in tune with the larger picture while focusing on the current
effort.

Once the Charter carries the signatures of GoldOwners and development leaders, it
then becomes the reference point for response to any change in project circumstances. If
resources get diverted, or objectives change, or new Events enter the mix, or additional
traffic needs to cross the system boundary, everyone declares an immediate (and
usually brief) time-out while the parties reconvene to re-establish the balance between
intentions and resources. Failure to come to a new agreement shuts down the project.

Here are some tests to help you certify that the Charter is well-formed:

Objectives-
S Have we stated each objective as a measurable external effect with an associated

day of reckoning (either discrete or recurring)??

S Can we show that all objectives support the strategic plans of the larger
organization??

S Could the success of any objective prevent the success of any others??
S Can we reasonably hold the circumstance inside the boundary to account for the

success or failure of each objective??
S Is there a balance between the Objectives and the Committed Resources??
S Is there at least one Authorizing Player who will speak for each Objective??
S Is there a credible and feasible way to actually assess the conditions of each

Objective at the appointed time??

Boundary-
S Have we declared (and defined with rigorous content definitions) all of the cross-

Boundary traffic, along with the identity of the sources and destinations of those
flows??

S Have we listed all of the external triggering occurrences (Key Events), including
temporal conditions and other-system-generated prompts, that oblige some sort
of behavior within our Boundary??

S Are all Key Events reasonably detectable??

Committed Resources-
S Have we clearly itemized all of the necessary and appropriate resources from

these categories:
C Dollars
C People Time
C Tools
C Training (for both developers and users)
C Access (to information and to timely decision-making)
C supportive Working Environment
C Permission to Iterate (rather than have preliminary results be embraced as

final products)??
S Have we secured agreement to re-negotiate when there is any failure to make the

Committed Resources available??
S Is the set of Resources sufficient to meet the objectives within the Boundary??

Authorizing Players-
S Do the Players truly have organizational sanction to make the commitments they

have signed??
S Have we secured agreement to re-negotiate when there are any changes in the

cast of Authorizing Players??

The Charter is offered to the developers as a proposal, with the developers either
accepting or declining the offer. With acceptance, there is a formal ceremony of
agreement and a project is launched; the other possibility is for the developers to

suggest a counter-proposal that speaks more realistically to the capabilities and energies
of the team. The counter-proposal is a starting point for additional negotiation, where
the two parties work on a balance between intentions and resources. They either agree
or let it go. In the absence of agreement, the business folks are free to engage in a search
for other players interested in taking on work that is poorly targeted, under-
provisioned, or vaguely bounded.

It is time in the history of computing to complete the loop. We turned our first efforts
to mastering code, over half a century ago. With the emergence of faster, cheaper,
hairier technology we set our sights on bigger challenges and opportunities during the
60’s and 70’s. That created such a mess that we discovered and refined the practice of
design, in order to make software more manageable and accommodating to change.
With increasingly elegant solutions to what turned out to be the wrong problems, we
spent the 80’s and 90’s coming to grips with effective methods and presentations for
agreeing on requirements. Now we see more urgency than ever for taking positive
steps to fully align the interests of the organizations we serve with the rapidly
expanding system capabilities at our collective disposal. Charters and Chartering offer
a basis for fulfilling that potential.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

