
 Smells to Refactorings

 Quick Reference Guide

Smell Refactoring
Unify Interfaces with Adapter [K 247]

Rename Method [F 273]

Move Method [F 142]

Combinatorial Explosion: A subtle form of duplication, this smell exists when numerous
pieces of code do the same thing using different combinations of data or behavior. [K 45]

Replace Implicit Language with Interpreter [K 269]

Rename Method [F 273]
Extract Method [F 110]

Introduce Assertion [F 267]

Introduce Null Object [F 260, K 301]
Move Embellishment to Decorator [K 144]
Replace Conditional Logic with Strategy [K 129]

Replace State-Altering Conditionals with State [K 166]

Move Method [F 142]
Encapsulate Field [F 206]

Encapsulate Collection [F 208]

Extract Class [F 149]

Preserve Whole Object [F 288]

Introduce Parameter Object [F 295]

Divergent Change: Occurs when one class is commonly changed in different ways for
different reasons. Separating these divergent responsibilities decreases the chance that
one change could affect another and lower maintenance costs. [F 79]

Extract Class [F 149]

Chain Constructors [K 340]
Extract Composite [K 214]
Extract Method [F 110]
Extract Class [F 149]
Form Template Method [F 345, K 205]
Introduce Null Object [F 260, K 301]
Introduce Polymorphic Creation with Factory Method [K 88]
Pull Up Method [F 322]
Pull Up Field [F 320]
Replace One/Many Distinctions with Composite [K 224]
Substitue Algorithm [F 139]

Unify Interfaces with Adapter [K 247]

Extract Method [F 110]
Move Method [F 142]

Move Field [F 146]

Collapse Hierarchy [F 344]
Inline Class [F 154]

Inline Singleton [K 114]

Move Method [F 142]
Move Field [F 146]
Change Bidirectional Association to Unidirectional Association [F 200]
Extract Class [F 149]
Hide Delegate [F 157]

Replace Inheritance with Delegation [F 352]

Introduce Foreign Method [F 162]

Introduce Local Extension [F 164]

Indecent Exposure: This smell indicates the lack of what David Parnas so famously
termed information hiding [Parnas]. The smell occurs when methods or classes that ought
not to be visible to clients are publicly visible to them. Exposing such code means that
clients know about code that is unimportant or only indirectly important. This contributes
to the complexity of a design. [K 42]

Encapsulate Classes with Factory [K 80]

Extract Class [F 149]
Extract Subclass [F 330]
Extract Interface [F 341]
Replace Data Value with Object [F 175]
Replace Conditional Dispatcher with Command [K 191]
Replace Implicit Language with Interpreter [K 269]

Replace State-Altering Conditionals with State [K 166]

Conditional Complexity: Conditional logic is innocent in its infancy, when it’s simple to
understand and contained within a few lines of code. Unfortunately, it rarely ages well.
You implement several new features and suddenly your conditional logic becomes
complicated and expansive. [K 41]

Incomplete Library Class: Occurs when responsibilities emerge in our code that clearly
should be moved to a library class, but we are unable or unwilling to modify the library
class to accept these new responsibilities. [F 86]

Duplicated Code: Duplicated code is the most pervasive and pungent smell in software.
It tends to be either explicit or subtle. Explicit duplication exists in identical code, while
subtle duplication exists in structures or processing steps that are outwardly different, yet
essentially the same. [F76, K 39]

Inappropriate Intimacy: Sometimes classes become far too intimate and spend too
much time delving into each others’ private parts. We may not be prudes when it comes
to people, but we think our classes should follow strict, puritan rules. Over-intimate
classes need to be broken up as lovers were in ancient days. [F 85]

Feature Envy: Data and behavior that acts on that data belong together. When a method
makes too many calls to other classes to obtain data or functionality, Feature Envy is in
the air. [F 80]

Alternative Classes with Different Interfaces: occurs when the interfaces of two classes
are different and yet the classes are quite similar. If you can find the similarities between
the two classes, you can often refactor the classes to make them share a common
interface [F 85, K 43]

Comments (a.k.a. Deodorant): When you feel like writing a comment, first try "to refactor
so that the comment becomes superfluous" [F 87]

Data Clumps: Bunches of data that that hang around together really ought to be made
into their own object. A good test is to consider deleting one of the data values: if you did
this, would the others make any sense? If they don't, it's a sure sign that you have an
object that's dying to be born. [F 81]

Data Class: Classes that have fields, getting and setting methods for the fields, and
nothing else. Such classes are dumb data holders and are almost certainly being
manipulated in far too much detail by other classes. [F 86]

Large Class: Fowler and Beck note that the presence of too many instance variables
usually indicates that a class is trying to do too much. In general, large classes typically
contain too many responsibilities. [F 78, K 44]

Freeloader (a.k.a. Lazy Class): A class that isn’t doing enough to pay for itself should be
eliminated. [F 83, K 43]

 F - Fowler, Martin. Refactoring: Improving the Design of Existing Code.
 K - Kerievsky, Joshua. Refactoring to Patterns.

http://industriallogic.com
Copyright © 2005, Industrial Logic, Inc.

All Rights Reserved

 Smells to Refactorings

 Quick Reference Guide

Smell Refactoring
Extract Method [F 110]
Compose Method [K 123]
Introduce Parameter Object [F 295]
Move Accumulation to Collecting Parameter [K 313]
Move Accumulation to Visitor [K 320]
Decompose Conditional [F 238]
Preserve Whole Object [F 288]
Replace Conditional Dispatcher with Command [K 191]
Replace Conditional Logic with Strategy [K 129]
Replace Method with Method Object [F 135]

Replace Temp with Query [F 120]

Replace Parameter with Method [F 292]

Introduce Parameter Object [F 295]

Preserve Whole Object [F 288]

Hide Delegate [F 157]
Extract Method [F 110]

Move Method [F 142]

Remove Middle Man [F 160]
Inline Method [F 117]

Replace Delegation with Inheritance [F 355]

Oddball Solution: When a problem is solved one way throughout a system and the same
problem is solved another way in the same system, one of the solutions is the oddball or
inconsistent solution. The presence of this smell usually indicates subtly duplicated code.
[K 45]

Unify Interfaces with Adapter [K 247]

Move Method [F 142]

Move Field [F 146]

Replace Data Value with Object [F 175]
Encapsulate Composite with Builder [K 96]
Introduce Parameter Object [F 295]
Extract Class [F 149]
Move Embellishment to Decorator [K 144]
Replace Conditional Logic with Strategy [K 129]
Replace Implicit Language with Interpreter [K 269]
Replace Implicit Tree with Composite [K 178]
Replace State-Altering Conditionals with State [K 166]
Replace Type Code with Class [F 218, K 286]
Replace Type Code with State/Strategy [F 227]
Replace Type Code with Subclasses [F 223]

Replace Array With Object [F 186]

Push Down Field [F 329]
Push Down Method [F 322]

Replace Inheritance with Delegation [F 352]

Move Method [F 142]
Move Field [F 146]

Inline Class [F 154]

Solution Sprawl: When code and/or data used in performing a responsibility becomes
sprawled across numerous classes, solution sprawl is in the air. This smell often results
from quickly adding a feature to a system without spending enough time simplifying and
consolidating the design to best accommodate the feature. [K 43]

Move Creation Knowledge to Factory [K 68]

Collapse Hierarchy [F 344]
Rename Method [F 273]
Remove Parameter [F 277]

Inline Class [F 154]

Move Accumulation to Visitor [K 320]
Replace Conditional Dispatcher with Command [K 191]
Replace Conditional with Polymorphism [F 255]
Replace Type Code with Subclasses [F 223]
Replace Type Code with State/Strategy [F 227]
Replace Parameter with Explicit Methods [F 285]

Introduce Null Object [F 260, K 301]

Extract Class [F 149]

Introduce Null Object [F 260, K 301]

Temporary Field: Objects sometimes contain fields that don't seem to be needed all the
time. The rest of the time, the field is empty or contains irrelevant data, which is difficult to
understand. This is often an alternative to Long Parameter List. [F 84]

Switch Statement: This smell exists when the same switch statement (or “if…else if…else
if” statement) is duplicated across a system. Such duplicated code reveals a lack of object-
orientation and a missed opportunity to rely on the elegance of polymorphism. [F 82, K 44]

Speculative Generality: This odor exists when you have generic or abstract code that
isn’t actually needed today. Such code often exists to support future behavior, which may
or may not be necessary in the future. [F 83]

Parallel Inheritance Hierarchies: This is really a special case of Shotgun Surgery - every
time you make a subclass of one class, you have to make a subclass of another. [F 83]

Middle Man: Delegation is good, and one of the key fundamental features of objects. But
too much of a good thing can lead to objects that add no value, simply passing messages
on to another object. [F 85]

Long Parameter List: Long lists of parameters in a method, though common in
procedural code, are difficult to understand and likely to be volatile. Consider which objects
this method really needs to do its job - it's okay to make the method to do some work to
track down the data it needs. [F 78]

Message Chains: Occur when you see a long sequence of method calls or temporary
variables to get some data. This chain makes the code dependent on the relationships
between many potentially unrelated objects. [F 84]

Shotgun Surgery: This smell is evident when you must change lots of pieces of code in
different places simply to add a new or extended piece of behavior. [F 80]

Refused Bequest: This smell results from inheriting code you don't want. Instead of
tolerating the inheritance, you write code to refuse the "bequest" -- which leads to ugly,
confusing code, to say the least. [F 87]

Primitive Obsession: Primitives, which include integers, Strings, doubles, arrays and
other low-level language elements, are generic because many people use them. Classes,
on the other hand, may be as specific as you need them to be, since you create them for
specific purposes. In many cases, classes provide a simpler and more natural way to
model things than primitives. In addition, once you create a class, you’ll often discover
how other code in a system belongs in that class. Fowler and Beck explain how primitive
obsession manifests itself when code relies too much on primitives. This typically occurs
when you haven’t yet seen how a higher-level abstraction can clarify or simplify your code.
[F 81, K 41]

Long Method: In their description of this smell, Fowler and Beck explain several good
reasons why short methods are superior to long methods. A principal reason involves the
sharing of logic. Two long methods may very well contain duplicated code. Yet if you
break those methods into smaller methods, you can often find ways for the two to share
logic. Fowler and Beck also describe how small methods help explain code. If you don’t
understand what a chunk of code does and you extract that code to a small, well-named
method, it will be easier to understand the original code. Systems that have a majority of
small methods tend to be easier to extend and maintain because they’re easier to
understand and contain less duplication. [F 76, K 40]

 F - Fowler, Martin. Refactoring: Improving the Design of Existing Code.
 K - Kerievsky, Joshua. Refactoring to Patterns.

http://industriallogic.com
Copyright © 2005, Industrial Logic, Inc.

All Rights Reserved

